Week-05-L-03

Agricultural Statistics in Practice

Stability & Sustainability Analysis

Models Assessing Stability – Perkins and Jinks Model

Dr. Amandeep Singh

Imagineering Laboratory
Indian Institute of Technology Kanpur

Perkins and Jinks Model

- Perkins and Jinks (1968) in an attempt to improve the stability model of Eberhart and Russell opined that genotype-environment interaction is more important from stability point of view.
- As such they proposed to regress genotype-environmental interaction on environmental indices, rather than the mean performances of genotypes over the environment (Y_{ij}) , They proposed the following model:

$$Y_{ij} = \mu + a_i + e_j + g_{ij} + \varepsilon_{ij}, \quad i = 1, 2, \dots, t \text{ and } j = 1, 2, 3 \dots \dots$$

where Y_{ij} = Mean effect of i^{th} genotype in j^{th} situation

$$\mu_{s} = \frac{1}{s \times t} \sum_{i,j} Y_{ij}$$
; Mean of all the genotypes over the sitations $a_{i} = \overline{Y_{i}} - \mu$; Additive effect due to i^{th} genotype $e_{j} = \overline{Y_{j}} - \mu$; Additive effect due to j^{th} situation $g_{ij} = Y_{ij} - \mu - a_{i} - e_{j}$; Interaction effect of i^{th} genotype in j^{th} situation ε_{ij} ; Error associated with i^{th} genotype $i_{n}j^{th}$ situation

Perkins and Jinks Model

Again,
$$g_{ij} = \beta_i e_j + \delta_{ij}$$
Where, β_i is the regression

Where, β_i is the regression coefficient, and δ_{ij} is he deviation from regression

Thus, the Perkins-Jink model turns out to be:

$$Y_{ij} = \mu + a_i + e_j + g_{ij} + \varepsilon_{ij}$$

$$= \mu + a_i + e_j + \beta_i e_j + \delta_{ij} + \varepsilon_{ij}$$

$$= \mu + a_i + e_j (1 + \beta_i) + \delta_{ij} + \varepsilon_{ij}$$

So the basic structure of the model remains the same, even the deviation from regression.

But the regession coefficient b_i , in Eberhart – Russell model becomes $b_i = (1 + \beta_i)$

Solution

- Perkins-Jinks ANOVA
- · Consider the following given stability table except the column of regression coefficient

SOV	D.F.	SS	MS
Genotypes Environment/join regression Genotype x Environment	5 - 4 - 20	71.377 5.617 23.835	14.275 1.404 1.192
Heterogenity between regression Remainder	5	17.272 6.564	3.454 0.438

Conclusion

Variety	$V_{\underline{i}} - \overline{V}$	$b_i - 1 = \beta_i$	$\overline{S}_{d_i}^2$	Inference
V_1	1.791	1.289	0.527	Low stability, good for rich environment
V_2	2.164	2.857	0.460	Low stability, good for rich environment
V_3	- 1.736	- 0.449	0.138	Low performance, less sensitive to environment
V_4	- 0.122	- 0.894	0.323	Slightly low performance, less sensitive to environment
V_5	- 0.289	- 0.041	0.291	Slightly low performance, comparatively stable, good for average environment
V_6	- 1.809	- 2.761	0.028	Low performance, good for poor environment

Thus, the relative ranking of the genotypes remains the same as it is in case of Eberhart - Russell Model

Thank You

