Agricultural Statistics in Practice

Index Numbers \& Forecasting

Index Numbers An Introduction

Prof. J. Ramkumar

Dept. of ME \& Design Indian Institute of Technology Kanpur

Global Index Numbers

- FAO Food Price Index: measures monthly change in international prices of a basket of food commodities.
- Global Agricultural Productivity Index: measures agricultural productivity of 117 countries based on their ability to efficiently produce food.
- Agri-Food Trade Index: measures the competitiveness of countries' agri-food sectors based on various trade-related indicators.

FAO Food Commodity Price Indices

Index Numbers

- An economic data figure reflecting price or quantity compared with a standard or base value.
- Base usually = 100
- Index number usually $=100 \times$ ratio to the base value
- Assume apples costs twice as much in 2023 as it did in 2000, its index number would be 200 relative to 2000 .
- Allows economists to make comparisons of costs to reduce unwieldy business data into easily terms.

Components of Index Number

- Base period: This is the starting point or reference period against which we want to measure the changes
- Current period: This is Reference period we want to compare to base period to see how 1983-1993 things have changed.
- Weights: Values assigned to each component being measured to calculate overall index number.

Base Period

Index Formulas

- Laspeyres Formula $\rightarrow L=\frac{\sum p_{c} q_{b}}{\sum p_{b} q_{b}} \times 100$ (uses quantities defined in base period as weights)
- Paasche Formula $\rightarrow \mathrm{P}=\frac{\sum p_{c} q_{c}}{\sum p_{b} q_{c}} \times 100$ (uses quantities in current period as weights) Key:
$p_{c}=$ price in current period $\quad q_{c}=$ quantity in current period
$p_{b}=$ price in base period $\quad q_{b}=$ quantity in base period
\rightarrow The Laspeyres Formula can overestimate price changes due to not accounting for changes in consumer behavior, while Paasche Formula can underestimate price changes due non-accounting of introduction of new products.
\rightarrow Additionally, both formulas can be difficult to calculate accurately as it requires detailed data collection, making them time-consuming \& resource-intensive.

Solution

- Drobisch in 1871 gave $D=\frac{L+P}{2}$
- Fisher in 1920 gave $\mathrm{F}=(L \times P)^{1 / 2}$
- But as firms are willing to incur expense these two indexes are never encountered.
- Both L \& P indexes give near about same values

Thank You

