Week-04-L-06

Agricultural Statistics in Practice

Regression Path Analysis

MS Excel Program for determination of regression path coefficients

Dr. Amandeep Singh

Imagineering Laboratory Indian Institute of Technology Kanpur

Example

 Assume, we have data for height of a plant for 5 consecutive days, to measure the impact of a <u>growth booster fertilizer</u> on the plant.

Day	Height (m)
1 .	2.
2 ·	4
3 .	5
4.	6
5	6

MedTech

2

4

5

6

6

5

Solution

0

1

• We've the data as given below.

2

3

We'll now plot all these value in a graph with the axes as shared trub ac Tuber endent. Height of plant versus Days Height (m) Day 6 1 ^L 5, 6 4,6 5 3, 5 2 4 2, 4 3 3 2 4 1, 2

Solution

- Now we'll take mean of the x values, which is 3 and mark it in the graph, similarly for y values as well
- All our regression lines will pass through the point (3,4.6)

Day	Height (m)
1	2
2	4
3	5
4	6
5	6
Mean 3	4.6

Solution

• So we now calculate the distance between each of the points and the mean from <u>respective</u> axis, first we'll go for x-axis & will note the values in the table.

Height of plant versus Days

Solution

- So now we'll move to find b_1 i.e. slope of the line of the equation: $\hat{y} = b_0 + b_1 x$
- So we calculate $(x \overline{x})^2 \& (x \overline{x}) \times (y \overline{y})$

Height of plant versus Days

7 —		Day	Height (m)	$x-\overline{x}$	$y - \overline{y}$
6 —	-3,5 -4,6 -5,6	1	2	1 - 3 = -2	2 - 4.6 = -2.6
4 —		2	4	2 - 3 = -1	4 - 4.6 = -0.6
3 —		3	5	3 - 3 = 0	5 - 4.6 = 0.4
2 —	1, 2	4	6	4 - 3 = 1	6-4.6=1.4
0 —		5	6	5 - 3 = 2	6-4.6=1.4
	1 2 3 4 5				

- $\hat{y} = \hat{b_0} + \hat{b_1}x$
- Calculating $(x \overline{x})^2 \& (x \overline{x}) \times (y \overline{y})$

	Day	Height (m)	$x-\overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(x-\overline{x}) \times (y-\overline{y})$
	1	2	1 - 3 = -2	2 - 4.6 = -2.6	4	5.2
	2	4	2 - 3 = -1	4 - 4.6 = -0.6	1	0.6
	3	5	3 - 3 = 0	5 - 4.6 = 0.4	0	0
	4	6	4 - 3 = 1	6 - 4.6 = 1.4	1	1.4
	5	6	5 - 3 = 2	6 - 4.6 = 1.4	4	2.8
				Sum	10 —	— 10
•	b ₁ =	$\frac{\sum (x - \overline{x}) \times (y - \overline{x})}{\sum (x - \overline{x})^2}$	$\overline{\overline{y}}$ = $\frac{10}{10}$ =	= 1		

- *y* = *the intercept value which is* 4.6
- Hence, we can find the value of b_0 via linear algebra

Thank You

at the

