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Factor Analysis 

 
Factor analysis is a set of procedures commonly employed for data reduction and 

summarization, particularly in marketing research where a considerable number of correlated 

variables need to be streamlined to a manageable level. It involves exploring and representing 

the relationships among multiple interconnected variables by identifying a few underlying 

factors. For instance, to assess the image of a fashion brand, participants may be asked to 

evaluate various competing brands using a semantic differential scale or a Likert scale. The 

resulting evaluations are then analyzed to reveal the fundamental factors that contribute to the 

perception of the fashion brand. 

 

Unlike analysis of variance, multiple regression, and discriminant analysis, where one variable 

is considered dependent or criterion while others are considered independent or predictor 

variables, factor analysis does not make such a distinction. Instead, it is an interdependence 

technique that examines the entire set of interrelated relationships. Factor analysis enables the 

exploration of possible interconnections between multiple variables and the assessment of the 

underlying causes behind these relationships. 

 

Factor analysis finds application in various scenarios: 

 

1. The primary objective of factor analysis is to reveal the underlying dimensions or 

factors that can explain the correlations among a group of variables. For instance, food 

habit statements might be employed to gauge consumers' psychographic profiles, which 

may in turn represent the raw food requirements in particular sectors (and 

governments/farmers can determine the potential market for it. By subjecting these 

statements to factor analysis, we can identify the fundamental psychographic factors, 

as demonstrated in the example given. This is also depicted in Figure 1, which presents 

the results of empirical analysis indicating that two factors can represent seven 

psychographic variables. In the figure, factor 1 can be interpreted as the contrast 

between being a homebody and a socialite, while factor 2 can be seen as the difference 

between preferences for eating outside and fruits/non-vegan.  

 
Figure 1 

 

2. Another crucial use of factor analysis is to find a reduced set of uncorrelated variables 

that can replace the original set of correlated variables in subsequent multivariate 

analyses, such as regression or discriminant analysis. In the mentioned example, the 

identified psychographic factors could serve as independent variables to explain the 

distinctions between loyal and non-loyal consumers. Consequently, instead of 
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employing the original seven correlated psychographic variables depicted in Figure 1, 

we can utilize the two uncorrelated factors, namely, homebody versus socialite and 

vegan versus non-vegan, for further analyses. 

 

3. Factor analysis serves the purpose of identifying a smaller, more meaningful set of 

variables from a larger set to be utilized in subsequent multivariate analysis. For 

instance, we can select a few original eating habits statements that strongly correlate 

with the identified factors and use them as independent variables to explain the 

distinctions between loyal and non-loyal users. 

 

All these applications of factor analysis are exploratory in nature, earning it the designation of 

exploratory factor analysis (EFA). Marketing research benefits from numerous uses of factor 

analysis, such as: 

 

• In market segmentation, it aids in identifying the underlying variables for customer 

grouping. For example, new tractor buyers may be categorized based on their emphasis 

on economy, convenience, performance, and comfort, resulting in four segments: 

economy seekers, convenience seekers, performance seekers, and comfort seekers. 

 

• In product research, factor analysis helps determine the brand attributes influencing 

consumer choices. For instance, toothpaste brands can be evaluated in terms of 

attributes like protection against cavities, teeth whiteness, taste, fresh breath, and price. 

 

• In advertising studies, factor analysis can shed light on the media consumption habits 

of the target market. For instance, users of frozen foods might be found to be heavy 

viewers of horror films, avid players of electronic games, and listeners of rock music. 

 

• In pricing studies, factor analysis can be employed to identify the characteristics of 

price-sensitive consumers. For example, such consumers might exhibit traits like being 

methodical, value-oriented, and home-centric. 

 

Factor Analysis Model 

Mathematically, factor analysis bears some resemblance to multiple regression analysis as each 

variable is represented as a linear combination of underlying factors. The extent to which a 

variable shares variance with other variables in the analysis is referred to as "communality." 

The relationships among the variables are characterized by a small number of common factors, 

along with a unique factor for each variable. These underlying factors are not directly observed. 

If the variables are standardized, the factor model may be represented as: 

 

𝑋𝑖 = 𝐴𝑖1𝐹1 + 𝐴𝑖2𝐹2 + 𝐴𝑖3𝐹3 + ⋯ + 𝐴𝑖𝑚𝐹𝑚 + 𝑉𝑖𝑈𝑖 

 

where       𝑋𝑖   = 𝑖𝑡ℎ  standardized variable 
                𝐴𝑖𝑗  = standardized multiple regression coefficient of variable i on common factor j 

                𝐹    = common factor   

                𝑉𝑖    = standardized regression coefficient of variable i on the unique factor i 

                𝑈𝑖    = the unique factor for variable i 

                𝑚   = number of common factors 

 

The unique factors are correlated with each other and with the common factors. The common 

factors themselves can be expressed as linear combination of the observed variables: 
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𝐹𝑖 = 𝑊𝑖1𝑋1 + 𝑊𝑖2𝑋2 + 𝑊𝑖3𝑋3 + ⋯ + 𝑊𝑖𝑘𝑋𝑘 

 

where      𝐹𝑖    = estimate of ith factor 
    𝑊𝑖   = weight or factor score coefficient 

                𝑘    = number of variables 

To determine these factors, it is possible to select weights or factor score coefficients. The first 

factor is chosen to account for the largest portion of the total variance. Then, a second set of 

weights is selected to ensure that the second factor explains most of the remaining variance 

while being uncorrelated with the first factor. The same principle can be applied to select 

additional weights for additional factors. This process ensures that the estimated factors' scores, 

unlike the original variables' values, are not correlated. Additionally, the first factor captures 

the highest variance in the data, followed by the second factor with the second-highest variance, 

and so on. Various statistics are associated with factor analysis. 

 

Statistics associated with factor analysis: 

The key statistics related to factor analysis include: 

 

• Bartlett's test of sphericity: This test statistic examines the hypothesis that variables in 

population are uncorrelated. In simpler terms, it checks whether population correlation 

matrix is an identity matrix, meaning each variable has perfect correlation with itself (r = 

1) but no correlation with other variables (r = 0). 

• Communality: Communality refers to the amount of variance a variable shares with all the 

other variables being considered. It also represents the proportion of variance explained by 

the common factors. 

• Correlation matrix: A correlation matrix is a lower triangular matrix displaying the simple 

correlations (r) between all possible pairs of variables included in the analysis. The diagonal 

elements, which are all one, are typically omitted. 

• Eigenvalue: The eigenvalue signifies the total variance explained by each factor. 

• Factor loadings: Factor loadings are the simple correlations between the variables and the 

extracted factors. 

• Factor loading plot: A factor loading plot visually displays the original variables using the 

factor loadings as coordinates. 

• Factor matrix: The factor matrix contains the factor loadings of all variables on the 

extracted factors. 

• Factor scores: Factor scores are composite scores estimated for each participant based on 

the derived factors. 

• Factor scores coefficient matrix: This matrix holds the weights, or factor score coefficients, 

used to combine the standardized variables to obtain factor scores. 

• Percentage of variance: This represents the percentage of total variance attributed to each 

factor. 

• Residuals: Residuals are the differences between the observed correlations from the input 

correlation matrix and the estimated correlations from the factor matrix. 

• Scree plot: A scree plot is a graphical representation of the eigenvalues against the number 

of factors in the order of extraction.  

 

Conducting factor analysis: 

The steps involved in conducting factor analysis are outlined in Figure 2. The process begins 

with defining the factor analysis problem and identifying the variables to be factor analyzed. 

A correlation matrix of these variables is then constructed, and a suitable method of factor 

analysis is chosen. The researcher must decide on the number of factors to be extracted and the 
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rotation method to be employed. Following this, the rotated factors are interpreted. Depending 

on the research objectives, factor scores may be calculated, or surrogate variables selected, to 

represent the factors in subsequent multivariate analysis. Finally, the fit of the factor analysis 

model is evaluated. Each step is discussed in greater detail in the following subsections. 

 

Formulate the problem: 

Formulating the problem involves several tasks. The researcher first identifies the objectives 

of the factor analysis. The variables to be included in the analysis are specified based on 

previous research (quantitative or qualitative), theoretical considerations, and the researcher's 

judgment. It is crucial that the variables are appropriately measured on an interval or ratio scale. 

The sample size used should be appropriate, with a general guideline of having at least four or 

five times as many observations (sample size) as there are variables. However, in certain 

marketing research situations, the sample size might be small, leading to a lower ratio. In such 

cases, caution should be exercised when interpreting the results. 

 

To illustrate factor analysis, let's consider a scenario where the researcher aims to determine 

the underlying benefits consumers seek from purchasing toothpaste. The researcher conducted 

interviews with 30 participants using a seven-point scale to gauge their agreement with 

statements related to toothpaste benefits (e.g., preventing cavities, freshening breath). The 

participants were requested to express their level of agreement with the provided statements 

using a seven-point scale, where 1 stands for "strongly disagree" and 7 represents "strongly 

agree." 

 

V1 :  It is important to buy a toothpaste that prevents cavities. 

V2 : I Like a toothpaste that gives shiny teeth. 

V3 : A toothpaste should strengthen your gums. 

V4 : I prefer a toothpaste that freshens breath. 

V5 : Prevention of tooth decay should be an important benefit offered by a 

toothpaste. 

V6 : The most important consideration in buying a toothpaste is attractive teeth. 

 

The obtained data is shown in Table 1. While this illustration involves a small number of 

observations for clarity, factor analysis is typically conducted on much larger samples. A 

correlation matrix is then constructed based on these rating data. 

 

Construct the correlation matrix: 

The analytical process is based on a correlation matrix of the variables. Insights can be gained 

from examining this matrix. For factor analysis to yield meaningful results, the variables should 

be correlated, which is generally the case in practice. If all the correlations between variables 

are small, factor analysis might not be appropriate. Variables that are highly correlated with 

each other are expected to have high correlations with the same factor or factors.  

 

Formal statistical tests are available to assess the appropriateness of the factor model. Bartlett's 

test of sphericity evaluates the null hypothesis that the variables are uncorrelated in the 

population, meaning the population correlation matrix is an identity matrix. A significant test 

statistic supports the rejection of the null hypothesis, questioning the suitability of factor 

analysis. 
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The correlation matrix, constructed from the data 

obtained to understand toothpaste benefits, are as 

displayed in Table 2, there are notably strong correlations 

among V₁ (prevention of cavities), V₃ (strong gums), and 

V₅ (prevention of tooth decay). It is reasonable to expect 

these variables to correlate with the same underlying 

factors. Similarly, V₂ (shiny teeth), V₄ (fresh breath), and 

V₆ (attractive teeth) exhibit relatively high correlations, 

suggesting that they might also be associated with the 

same factors.  

 

The outcomes of the factor analysis can be found in Table 

3. Bartlett's test of sphericity rejects the null hypothesis, 

which assumes that the population correlation matrix is 

an identity matrix. The calculated chi-square statistic is 

approximately 111.314 with 15 degrees of freedom, and 

it is statistically significant at the 0.05 level. 

Consequently, factor analysis can be considered an 

appropriate technique for analyzing the correlation matrix 

shown in Table 2.   

                 Figure 2 

Table 1 

Participant number V1 V2 V3 V4 V5 V6 

1 7 3 6 4 2 4 

2 1 3 2 4 5 4 

3 6 2 7 4 1 3 

4 4 5 4 6 2 5 

5 1 2 2 3 6 2 

6 6 3 6 4 2 4 

7 5 3 6 3 4 3 

8 6 4 7 4 1 4 

9 3 4 2 3 6 3 

10 2 6 2 6 7 6 

11 6 4 7 3 2 3 

12 2 3 1 4 5 4 

13 7 2 6 4 1 3 

14 4 6 4 5 3 6 

15 1 3 2 2 6 4 

16 6 4 6 3 3 4 

17 5 3 6 3 3 4 

18 7 3 7 4 1 4 

19 2 4 3 3 6 3 

20 3 5 3 6 4 6 

21 1 3 2 3 5 3 

22 5 4 5 4 2 4 

23 2 2 1 5 4 4 

24 4 6 4 6 4 7 

25 6 5 4 2 1 4 

26 3 5 4 6 4 7 
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Table 2 a) 

Participant V1 V2 V3 V4 V5 V6 

V1 1.00 
     

V2 -0.053 1.00 
    

V3 0.873 -0.155 1.00 
   

V4 -0.086 0.572 -0.248 1.00 
  

V5 -0.858 0.020 -0.778 -0.007 1.00 
 

V6 0.004 0.640 -0.018 0.640 -0.136 1.00 

 

Table 2 b) 

Factor Eigenvalue Percentage of variance Cumulative percentage 

1 2.731 45.520 45.520 

2 2.218 36.969 82.488 

3 0.442 7.360 89.848 

4 0.341 5.688 95.536 

5 0.183 3.044 98.580 

6 0.085 1.420 100.000 

 

Extraction sums of squared loadings 

Table 3 a) 

Factor Eigen value Percentage of variance Cumulative percentage 

 2.731 45.520 45.520 

2 2.218 36.969 82.488 

 

Factor matrix 

Table 3 a) 

 Factor 1 Factor 2 

V1 0.928 0.253 

V2 -0.301 0.795 

V3 0.936 0.131 

V4 -0.342 0.789 

V5 -0.869 -0.351 

V6 -0.177 0.871 

 

 

Rotation sums of squared loadings 

Table 3 b) 

Factor Eigenvalue Percentage of variance Cumulative percentage 

 2.688 44.802 44.802 

2 2.261 37.687 82.488 

27 4 4 7 2 2 5 

28 3 7 2 6 4 3 

29 4 6 3 7 2 7 

30 2 3 2 4 7 2 
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Rotated factor matrix 

Table 3 c) 

 Factor 1 Factor 2 

V1 0.962 -0.027 

V2 -0.057 0.848 

V3 0.934 -0.146 

V4 -0.098 0.854 

V5 -0.933 -0.084 

V6 0.083 0.885 

 

Factor score coefficient matrix 

Table 3 d) 

 Factor 1 Factor 2 

V1 0.358 0.011 

V2 -0.001 0.375 

V3 0.345 -0.043 

V4 -0.017 0.377 

V5 -0.350 -0.059 

V6 0.052 0.395 

 

Reproduced correlation matrix 

Table 3 e) 

Variables V1 V2 V3 V4 V5 V6 

V1 0.926* 0.024 -0.029 0.031 0.038 -0.053 

V2 -0,078 0.723* 0.022 -0.158 0.Q38 -0.105 

V3 0.902 -0.177 0.894* -0.031 0.081 0.033 

V4 -0.117 0.730 -0.217 0.739* -0.027 -0.107 

V5 -0.895 -0.0,8 0.859 0.020 0.878* 0.016 

V6 0.057 -0.746 -0.051 0.748 -0.152 0.790 

 

*The lower-left triangle contains the reproduced correlation matrix; the diagonal, the 

communalities; and the upper-right triangle, the residuals between the observed correlations 

and the reproduced correlations. 

 

Selecting the Method of Factor Analysis  

 

Once it has been ascertained that factor analysis is an appropriate methodology for examining 

the dataset, the next step is to choose the suitable approach. The method employed to establish 

the weights or factor score coefficients distinguishes the various types of factor analysis. There 

are two fundamental approaches: principal components analysis and common factor analysis. 

Principal components analysis takes into account the total variance in the data. In this method, 

the diagonal of the correlation matrix comprises ones, and the factor matrix encompasses the 

complete variance. This appro4ach is recommended when the primary objective is to identify 

the minimum number of factors necessary to explain the maximum variance in the data for 

subsequent multivariate analysis. These factors are referred to as principal components. 

 

Conversely, common factor analysis estimates factors solely based on the shared variance. 

Communalities are placed on the diagonal of the correlation matrix. This method is suitable 
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when the main concern is to recognize the underlying dimensions, and the shared variance is 

of significance. It is also known as principal axis factoring. 

 

Alternate approaches for estimating common factors also exist, including unweighted least 

squares, generalized least squares, maximum likelihood, alpha method, and image factoring. 

These techniques are intricate and are not advisable for inexperienced users. The utilization of 

principal components analysis on the toothpaste example is illustrated in Table 3. 

 

Determining the Number of Factors  

It is possible to calculate as many principal components as there are variables; however, doing 

so does not lead to simplicity or the revelation of any underlying structure. To summarize the 

information inherent in the original variables, a smaller set of factors should be extracted. The 

question then becomes: how many factors should be chosen? Several methods have been 

proposed for determining the appropriate number of factors. These include a priori 

determination, approaches based on eigenvalues, the scree plot, percentage of variance 

explained, split-half reliability, and significance tests: 

1. A priori determination: Researchers sometimes have prior knowledge that allows them 

to anticipate the number of factors, enabling them to predefine this number before factor 

extraction. Most software applications facilitate this approach by permitting users to 

specify the desired number of factors. 

2. Eigenvalue-based determination: This approach retains only factors with eigenvalues 

surpassing 1.0, discarding the remaining factors. An eigenvalue signifies the amount of 

variance linked to a factor. Consequently, only factors with variances greater than 1.0 

are retained, as factors with variances below 1.0 are no more informative than 

individual variables, each of which has a variance of 1.0. For datasets with fewer than 

20 variables, this method generally yields a conservative number of factors. 

3. Scree plot-based determination: A scree plot displays eigenvalues against the order of 

factor extraction. The plot's shape guides the decision on the number of factors. 

Typically, the plot exhibits a distinct break between the steep decline of eigenvalues 

corresponding to significant factors and a gradual decline for the remaining factors. 

This gradual descent is referred to as the "scree." Empirical evidence suggests that the 

point where the scree begins marks the true number of factors. Normally, the number 

of factors derived from the scree plot will be slightly higher than that obtained from the 

eigenvalue criterion. 

4. Percentage of variance-based determination: This approach selects the number of 

factors in a manner that ensures the cumulative percentage of variance explained by the 

factors reaches an acceptable level. The definition of an acceptable level depends on 

the specific problem. It is generally advised that the extracted factors account for at 

least 60% of the variance. 

5. Split-half reliability-based determination: The dataset is divided into two halves, and 

factor analysis is conducted on each subset. Only factors with substantial agreement in 

factor loadings across the two subsets are retained. 

6. Significance tests-based determination: This approach involves assessing the statistical 

significance of individual eigenvalues and retaining only those factors with statistically 

significant eigenvalues. A limitation of this approach is that in large samples (size 

exceeding 200), numerous factors may be statistically significant, yet many of these 

contribute only minimally to the overall variance. 

 

Table 3 presents the application of the eigenvalue criterion, resulting in the extraction of two 

factors. Prior knowledge suggests that toothpaste purchases are driven by two primary reasons. 

The corresponding scree plot can be observed in Figure 3, indicating a clear break at three 



Agricultural Statistics in Practice 

Week 6 – Lecture 5 
  

 

Page 9 of 12 

factors. Furthermore, by considering the cumulative percentage of variance accounted for, it 

becomes apparent that the first two factors explain 82.49% of the variance, and progressing to 

three factors offers marginal improvement. Additionally, the split-half reliability analysis 

supports the appropriateness of two factors. In conclusion, this situation seems to justify the 

selection of two factors. 

 

The "extraction" column within the "Communalities" section of Table 3 furnishes pertinent 

details after the desired number of factors has been extracted. Notably, the communalities under 

"Extraction" differ from those under "Initial" because the variances attributed to the variables 

remain unexplained unless all factors are retained. The Table 3a labelled "Extraction sums of 

squared loadings" provides the variances linked to the retained factors. 
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Multivariate Multiple Linear Regression 

 
Multivariate multiple linear regression is a way to model the linear link between more than one 

independent variable and more than one dependent variable. It has more than one independent 

variable, so it is multiple, and it has more than one dependent variable, so it is a multivariate 

model. 

 

Assumptions Underlying Multivariate Multiple Linear Regression  

Assumptions are inherent to every statistical technique. Assumptions signify the prerequisite 

properties that your data must possess to ensure the accuracy of statistical method outcomes. 

The assumptions pertinent to Multivariate Multiple Linear Regression encompass the 

following aspects: 

1. Linearity: The variables of interest must exhibit a linear relationship. This implies that 

when plotting these variables, a straight line should effectively capture the data's shape. 

2. Absence of Outliers: The variables under consideration should not contain outliers. 

Linear Regression is sensitive to outliers—data points with exceptionally large or small 

values. Identifying outliers involves plotting the variables and identifying points that 

substantially deviate from the majority of other points. 

3. Homoscedasticity: Also known as similar spread across the range, homoscedasticity 

signifies that variables maintain consistent dispersion across their respective ranges. 

4. Normality of Residuals: "Residuals" pertain to the discrepancies between expected (or 

predicted) dependent variable values and the actual values. These discrepancies' 

distribution should conform to a normal (bell curve) distribution shape. Meeting this 

assumption ensures that the regression results are equally valid across the data's entire 

spread, devoid of any systematic bias. 

5. No Multicollinearity: Multicollinearity occurs when two or more independent variables 

demonstrate significant correlation among themselves. This situation renders 

regression coefficients and statistical significance unstable and less reliable. However, 

it doesn't inherently impact the model's goodness of fit. 

 

Employ Multivariate Multiple Linear Regression in the following scenarios: 

1. Prediction: When seeking a statistical tool to predict one variable using another, the 

situation calls for a prediction-oriented analysis. Other types of analyses involve 

examining the strength of the relationship between two variables (correlation) or 

comparing differences between groups (difference). 

2. Continuous Dependent Variable: The variable you intend to predict must be 

continuous. Continuous variables can assume a broad range of values, such as heart 

rate, height, weight, etc. Data types like ordered data, categorical data, or binary data 

are not continuous. 

3. Multiple Independent Variables: Multivariate Multiple Linear Regression is suitable 

when one or more predictor variables have multiple values for each unit of observation. 

4. No Repeated Measures: This method applies when there's only one observation for each 

unit of observation. Units of observation constitute individual data points, such as a 

store, customer, city, etc. For cases with repeated measurements from the same group 

over time, a Mixed Effects Model should be used. 

5. More than One Dependent Variable: To utilize Multivariate Multiple Linear 

Regression, you should have multiple dependent variables or variables you are aiming 

to predict. For a single dependent variable, Multiple Linear Regression suffices. 
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Example 1:  

In a dairy business, a farmer association plans to distribute milk across cities and they have 

assigned a budget on advertising at different cities and also recorded the city population. The 

association wishes to determine the revenue generated and customer traffic. 

 

Approach to solution: 

Dependent Variable 1: Revenue  

Dependent Variable 2: Customer traffic  

Independent Variable 1: Advertising expenditure by city  

Independent Variable 2: City Population 

 

The null hypothesis posits that there is no relationship between advertising spending and 

revenue or population by city. Our analysis assesses the validity of this hypothesis. 

 

After ensuring adherence to linear regression assumptions, the analysis is performed. This 

entails conducting multiple linear regressions for each dependent variable. Consequently, beta 

coefficients and p-values are derived for both the "revenue" and "customer traffic" models. 

Each linear regression model includes an intercept beta coefficient (β0) and potentially 

additional beta coefficients (β1, β2, etc.) representing the relationships between independent 

and dependent variables. 

 

These additional beta coefficients offer insights into the quantitative relationship between 

variables. A unit increase in a given independent variable corresponds to a change in the 

dependent variable by the value of the associated beta coefficient (with other independent 

variables held constant). 

 

The p-value linked to these beta values represents the probability of observing the results under 

the assumption of no actual relationship between that variable and revenue. A p-value ≤ 0.05 

indicates statistical significance, implying that the difference is not due to chance alone. Overall 

p-values for the model and individual p-values representing variable effects can be obtained 

through Multivariate Analysis of Variance (MANOVA). 

 

Moreover, the analysis yields an R-Squared (R2) value, ranging from 0 to 1, denoting the 

goodness of fit between the linear regression line and data points. A higher R2 signifies better 

model fit. 

 

Example 2 (for practice):  

A researcher wishes to determine what factors affect the health of Sunflower plants.  He 

accumulates information on the dependent variables such as average leaf diameter, the mass of 

the root ball, and the average bloom diameter, as well as the length of time the plant has been 

in its current container.  He measures several soil elements, as well as the quantity of light and 

water each plant receives, as independent variables. 
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