Week-04-L-04

Agricultural Statistics in Practice

Regression Path Analysis

Regression Path Coefficient Analysis

Prof. J. Ramkumar

Dept. of ME & Design Indian Institute of Technology Kanpur

Regression Path Coefficient Analysis

- Path analysis, proposed by Wright in 1921, was initially used for plant selection by Dewey and Lu in 1959.
- Path analysis involves partitioning correlation coefficients into standardized partial regression coefficients to assess direct and indirect effects of independent variables on the dependent variable.
- It is also known as cause and effect relationship analysis, as it helps understand the relationships between variables.

ideas to products ideas to products LABI IT KANPUR

Regression Path Coefficient Analysis

 Path analysis uses correlation coefficients to determine whether the association between yield-related traits and yield is direct or indirect, guiding geneticists in trait selection for improvement.

Where:

- *x*₁, *x*₂ and *x*₃ yield-related components
- *Y* is yield (effect) of the causal factors x_1 , x_2 and x_3 ;
- r designate association between variables;
- *a, b, c and h Path coefficients due to respective variables and*
- *R* is residual effect.

Path diagram showing cause and effect relationship

Path coefficient analysis:

- Each correlation can be decomposed into one or more of the following four types of effects:
- **1.** <u>**Direct Effect (DE)**</u> path coefficient DE from one variable to another, e.g., P_{21} .
- 2. <u>Indirect Effect (IE)</u> sequence of paths through one or more IE intermediate variables, e.g., $P_{32}P_{21}$.
- **3.** <u>Unanalyzed Effect</u> due to correlated causes (U) correlation of variable with t cause of the second, e.g., $P_{23}r_{13}$.
- **4.** <u>Spurious Effect</u> due to common cause (S) variable that causes both first and second variable, e.g., P₁₃P₁₂.

Effects relating variables 1 and 2:

Path Coefficient Analysis

- Sum of Direct Effect (DE) and Indirect Effect (IE) = total causal part of the correlation between two variables.
- 2. Sum of Unanalyzed effect (U) and Spurious effect (S) = total noncausal part of the correlation between two variables.

Assumptions:

- Models exhibit linear, additive, and causal relationships, excluding curvilinear, multiplicative, or interaction relations.
- Residuals within the model are uncorrelated with all other variables.
- Causal flow follows a one-way direction (applies to recursive models).
- Variables are measured on an interval scale.
- Predictor variables are measured without error.

Thank You

at the

