Week-03-L-03

Agricultural Statistics in Practice Analysis of Variance (ANOVA)

Two – Way ANOVA with one observation per cell

Prof. J. Ramkumar

Dept. of ME & Design Indian Institute of Technology Kanpur

Two – Way ANOVA

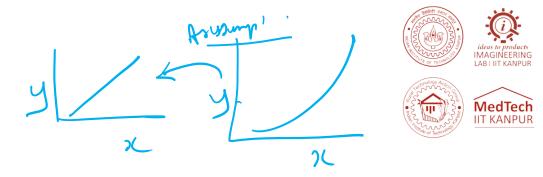
tomp / Feet VI yide.

- N-Way ANOVA is used when analyzing the influence of multiple assignable causes (factors) on the response variable, where N represents the number of factors being considered (N>=2).
- Two-Way ANOVA specifically examines the impact of two factors, each with multiple categories, on the dependent (response) variable.

Two way classification with one observation per cell								
A	B							
	B1	B2		Bj				
A1	(A1B1)	(A1B2)		(A1Bj)				
A2	(A2B1)	(A2B2)		(A2Bj)				
:				:				
:				:				
Ai	(AiB1)	(AiB2)		(AiBj)				
:	:	:		:				
:	:	:		:				

Α	В					
	B1	B2		Bj		
A1	(A1B1)1	(A1B2)1		(A1Bj)1		
	(A1B1)2	(A1B2)2		(A1Bj)2		
	(A1B1)3	(A1B2)3		(A1Bj)3		
			•••••	•••••		
	(A2B1)1	(A2B2)1		(A2Bj)1		
A2	(A2B1)2	(A2B2)2		(A2Bj)2		
	(A2B1)3	(A2B2)3	•••••	(A2Bj)3		
			•••••	•••••		
	•••••	•••••	•••••	•••••		
1				:		
1				1		
	(AiB1)1	(AiB2)1		(AiBj)1		
	(AiB1)2	(AiB2)2		(AiBj)2		
Ai	(AiB1)3	(AiB2)3		(AiBj)3		
				•••••	•••••	
:	:	:		:		
1	:	1		1		

Two way classification with more than one observation per cell



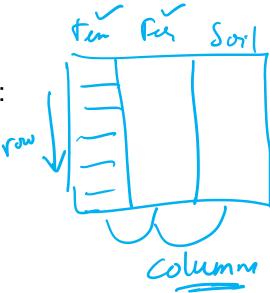
- The Analysis of Variance (ANOVA) is based on the fundamental concept of the "Linear Model."
- Observable quantities, denoted as X1, X2, ..., Xn, can be expressed as a sum of true values (µi) and error terms (ei).
- The error terms (e_i) are assumed to be independent and normally distributed with a mean of zero and a common variance (σe_2).
- The true values (μ_i) are assumed to be composed of linear functions of t_1 , t_2 , ..., t_{k_1} referred to as "effects."
- In a linear model, if the effects (tj's) are unknown constants, the model is considered a "fixed-effect model." If the effects are random variables, it is a "random-effect model."

- The effect that an independent variable has on the dependent variable
- There is always two main effects since there will always be two independent variables or Factors of the experiment
- The Main Effect of the COL & ROW
- The null hypothesis for the Main Effect of the column is:

 H_0 col: μ col 1 = μ col 2 = μ col k

• The null hypothesis for the Main Effect of the row is:

 H_0 row: µrow 1 = µrow 2 = µrow k



Main Effect & Interaction

- The research hypothesis for the Main Effect of the columns is: H1 col : At least one of the column samples comes from a different population distribution than the others
- The research hypothesis for the Main Effect of the rows is: H 1 row : At least one of the row samples comes from a different population distribution than the others
- Interaction is the effect of the combination of the two independent variables on the dependent variable.
- It is best seen by graphing the means of all levels of both factors.

Interaction & Source Table

- The significant interaction can be more interesting than significant Main Effects. The null hypothesis for the interaction is:
 *H*_{0rxc}: The effect of one independent variable (IV) on the dependent variable is unaffected by the other IV.
- The research hypothesis for the interaction is:
 *H*_{1rxc}: The effect of one independent variable (IV) on the dependent variable is affected by the other IV.

Variance Source	Sum of Squares	Degrees of Freedom	Mean Square	F-Ratio
Rows	SS _r /	df _r –	MS _r <	F _r
Columns	SS _c	df _c	MS _c	F _c
Interaction	SS _{rxc}	df _{rxc}	MS _{r x c}	F _{rxc}
Within	SS_{wg}	df_{wg}	MS _{wg}	
Total	Ss _{total}	df _{total}		

Calculations

- The formulas and tabulations for Two-Way ANOVA involve calculating sums of squares, degrees of freedom, mean squares, and conducting hypothesis tests.
- Here are the steps:
- a) Calculate the overall mean of the dependent variable.
- b) Compute the sum of squares for each factor and interaction, as well as the total sum of squares.
- c) Determine the degrees of freedom for each sum of squares.
- d) Calculate the mean squares by dividing the sum of squares by their respective degrees of freedom.
- e) Conduct hypothesis tests using F-tests to assess the significance of main effects and interactions.
- f) Interpret the results, considering the significance of each effect and their interactions.

Thank You

