

Feeding management in the prevention of production diseases

Dr.A.Bharathidhasan, M.V.Sc., Ph.D.,

Associate Professor and Section Head,
Rabbit Breeding Unit,
Post Graduate Research Institute in Animal Sciences,
Kattpakkam, Tamil Nadu.

Feeding Management in The Prevention of Production Diseases

OBJECTIVE

To impart the knowledge on feeding management in prevention of production diseases

Production Diseases

- Related to disturbance of one or more metabolic process in animals.
- Particularly during and after parturition
- Hormonal change
- Moving from non lactating to lactating animals
- Roughage to high concentrate diet
- Major drop in feed intake
- One in 2 dairy cows are prone for metabolic diseases

Production Diseases

Production Diseases

- Milk fever
- Ketosis
- Grass tetany
- Sub acute ruminal acidosis (SARA)
- **Laminitis**
- Fatty liver
- Downer cow syndrome
- Post parturient Haemoglobinurea

- Left displacement of abomesam (LDA)
- Bloat
- Retained fetal membrane (RFM)
- Liver abscesses
- Udder edema
- Mastitis
- Metritis

1.MILK FEVER (Hypocalcemia / Parturient paresis)

- Caused by a large calcium (Ca) demand, Occurs within 24 hrs of calving.
- Unable to meet the Ca demand at the onset of milk production
- Ca level in blood < 5 mg/dl
- Weakness, recumbency, shock, paralysis, circulatory collapse, coma and death
- 6% incidence rate in dairy cattle; Incidence increases with milk production and age
- Sub clinical hypocalcemia can affect 50% of dairy cows leads to:
 - Decreased dry matter intake
 - -- Ketosis
 - Retained placenta
 - RFM
 - Decreased reproductive efficiency
 - Decreased milk production

Causes

- Ca deficiency is due to severe outflow of Ca during initial milk production
- Calcium interacts with other minerals in the blood
 - Incidence may be influenced by levels of:
 - Mg, K, P and estrogen levels
 - Acid-base balance
 - Imbalances high risk for milk fever.
 - High alkaline environment hinders the mobilization of Ca from bone and absorption of Ca from intestine.
 - Inhibit parathyroid glands and renal synthesis of Vit D which restricts blood Ca levels
- Feeding high Ca diets prior to parturition
 - Cow doesn't adapt to mobilizing own Ca reserves

Calcium Homeostasis

Clinical Signs

- ► Stage I Standing
 - Hypertensive, weakness, anorexic, hypersensitive, shaking of head, protrusion of tongue and grinding of teeth
 - Prodromal stage- anorexia, agalactia, rumen stasis, scanty feces, normal temp, heart and respiratory rate

Clinical Signs

► Stage II – Sternal recumbency

► Flaccid paralysis, lying on sternum, depression, small muscle trem ors, low body temp, cold extremities, muffled heart beat, bloat, dilated pupils, lateral kink of head, subnormal temp 36-38° C and Dry muzzle

Typical position of a milk fever cow.

Note the 'S' neck and the rectum bulging with feces under her tail.

Clinical Signs

- ► Stage III Lateral recumbency
 - Unresponsive, unconscious stage, lying on side with legs stretched out, bloat develops, comatose
 - ► Animals will die if untreated in this stage

Treatment

Stage I

Oral or Intra Venous (IV) calcium salts

- ▶ Oral gels can absorb into the blood in ~15 min
- Oral treatment allows for higher Ca dosage
- May help prevent relapse
- Stage II & III

Must treat with IV Calcium

- Administer slowly over period of 10 min
- May require subsequent treatments

Should respond with in 30 minutes of treatment and be standing

Prevention and Control

- Good nutritional management practices in the pre and post parturient period
- Maintenance of Ca : P ratio
- Oral Calcium drenching 50-60% efficacy
- ► Acidification of the diet
 - DCAD balance (Na+K)-(CI+S)
- Low Calcium ration during pregnancy (20g per day)
- Vitamin D and its analogue administration

2.Ketosis

- Most frequently happens in first 6-8 wks after calving; Very often affects first calf heifers or older cows
- ▶ 40 % herd affecting this disease 50 % cow under sub clinical to 20 % clinical
- Decreased blood glucose level to 25 mg/dl from 50-60 mg/dl; 60-85 % available glucose utilized for milk production
- Increase in free fatty acid (FFA) and triglycerides in plasma
- Decreased liver glycogen and increased liver lipid content (30 % Vs 7 % normal value)
- Deficiency of ACTH and cortisone causes ketosis

Acetonemia / Ketosis

Cause

- Occurs when intake doesn't meet requirements of the animal
- Excessive amounts of ketone bodies (acetone, aceto acetate and B-hydroxy butyrate (BHBA) found in urine, blood and milk
- Butyrate to BHBA in rumen epithelium
- ▶ Blood ketone: 10 mg to 50 mg/dl and low blood sugar (25 mg/100ml)
- BHBA: Aceto acetate ratio Normal : 1:10.5 ; Ketosis: 1:3.6 to 1:4.3
- Animal mobilizes its own fat reserves
- Mobilized fat transported to liver and oxidized to Acetyl CoA
- Acetyl CoA oxidized to Aceto acetyl CoA via TCA cycle. It depends on adequate supply of oxalo acetate from the precursor propionate.
- Deficient of oxalo acetate limits Acetyl CoA oxidation and converted to Aceto acetate and BHBA
- Deficiency of ACTH and oxaloacetate
- Shortage of glucose precursors propionate AA and lactate

Can use a Keto Stick to test urine for ketone bodies