Impact of heat stress in broiler chicken

- Feed and nutrient intake declines.
- Feed intake reduced by 1.2 % for every 1°C rise in the temperature range of 22-32°C and 5 % for 1°C rise in the temperature range of 32-38°C.
- Water consumption increases -From 1:2 to 1:4
- Heat dissipation and panting
- Growth and FCR affected. Chronic heat exposure adversely affects the meat quality particularly meat: bone ratio.
- ► Mortality 5 10 %

Heat stress management

- ► Increase the levels of lysine, methionine, threonine, vitamins and minerals 10 20 %
- Add electrolytes potassium chloride / ammonium chloride / sodium bicarbonate 500 2000 gram per ton of feed
- ▶ Supplement with amla / vitamin C, vitamin E and selenium.
- Increase feed / watering space and reduce stock density
- ► Add vegetable oils 0.5 to 2.0 % so as to reduce heat increment.
- Avoid feeding during peak hours Between 12 noon 5.00 pm
- Cool / chilled water Promote water intake
- ▶ Continuous flow of water in pipelines during day time
 - Control the temperature of drinking water
- ▶ Pellet feed / crumble feed better than mash feed

PRODUCT DISPLAY

Winter management

- Feed intake regulated by energy density, calcium and aa content.
- Winter feed intake increases supply of other nutrients more
- Increase the energy density by 100 200 kcal per kg
- Excess energy leads to fat deposition Fatty liver – more mortality during summer
- Early cold conditioning to chicks,
- supplementing vitamin E 250 mg per kg of feed and
- Chromium 0.2 g per kg of feed can help reduce cold stress

Factor Influencing Feed Efficiency

- Dietary energy level As the energy level of the diet is reduced, birds eat more feed
- Male vs female
- Phase feeding Best weekly once
- Age and body weight at slaughter
- Feed processing using feeds with a CV of up to 7.5% is recommended.
- Feeding frequency Boost feed consumption
- Water intake to be promoted during heat stress
- Health status of birds coccidiosis / parasites

Feeding Management of Commercial Layers

Requirement of Layer Feeds As Per BIS (2007)

Characteristics (%)	Chick feed (0-8 wks)	Growing chicken feed (9-20 wks)	Layer Phase I (21-50 wks)	layer Phase II (51-72 wks)
Moisture, Max.	11	11	11	11
Crude protein, Min.	20	16	18	16
Ether extract, Min	2.0	2.0	2.0	2.0
Crude fibre, Max.	7	9	9	10
Acid insol. Ash, Max.	4	4	4	4.5
Salt (as NaCl), Max.	0.5	0.5	0.5	0.5

Characteristics (%)	Chick feed	Growing chicken feed	Layer Phase I	layer Phase II
Ca, Max.	1 1 1		3	3.5
Total P, Min.	0.7	0.65	0.65	0.65
Available P,Min.	0.45	0.4	0.4	0.4
Lysine, Min.	1.0	0.7	0.7	0.65
Methionine, Min.	0.4	0.35	0.35	0.3
M+C, Min.	0.7	0.6	0.6	0.55
M.E. (Kcal/kg), Min	2800	2500	2600	2400
Aflatoxin B1 (ppb), Max	20	20	20	20

S. No	Raw material	Chick	Grower	Layer
1	Maize	400	420	420
2	Broken rice / Sorghum / Bajra	100	100	132
3	De-oiled rice bran	191	220	80
4	Sunflower oil cake (Pellet) CP - 35 %	70	80	100
5	Rape seed / cotton seed / DDGS / coconut / Til / gingelly oil cake	0	20	20
6	Soyabean meal / Fish meal (not exceeding 10 %)	200	120	130
7	Di-calcium phosphate	15	20	18
8	Calcite / Lime stone powder	17	17	30
9	Shell grit / oyster shell / stone grit	0	0	60

Model ration for egg type chicken

S. No	Raw material	Chick	Grower	Layer
10	DL Methionine	1	1	1
11	L Lysine	0.5	0.5	0
12	Salt (Sodium	3	3	3
	chloride)			
13	Trace mineral	1	1	1.5
	mixture			
14	Toxin binder	1	1	1
15	Vitamin premix	0.5	0.5	0.75

Layer Feeding

	CHICK FEED (UP TO 7 WEEK)	GROWER FEED(8-11 WEEKS)	DEVELOPER FEED(12- 14 WEEKS)	PRY-LAY FEED(15-20 WEEKS)
WEIGHT GAIN (GRAM)	490	830	1040	1220
TOTAL CONSUMPTION OF FEED (in Kg)	1.3	1.4	1.2	1.7

NOTE-Growth Rate Better With Pellet/Crumble Than Mash Feed In Chick Feed (Up To 7 Weeks Of Age)

1-14/1-14/1-14/1-1

Phase Feeding

- Reduction In protein and Amino Acid Level of the Diet as Bird Progress Through a Laying Cycle
- According To age and Level of Production

NUTRIENT	PHASE-I	PHASE-II	PHASE-III
ME KCAL/KG	2500	2450	2450
СР	17.5	16	15.5
METHIONINE	0.40	0.30	0.30
LYSINE	0.80	0.70	0.70
CALCIUM	3.6	4.0	4.5
AVAILABLE PHOSPHORUS	0.35	0.30	0.30

Two Reasons To Decrease CP And Methionine

- ▶ To Reduce Feed Cost
- ▶ To Reduce Egg Size

Note- Both CP And Methionine Increases Egg Size

Feed intake & Liveability

	FEED INATKE (KG)	LIVEABILITY(%)
0 TO 18 WEEKS OF AGE	5.6	96-97
19 TO 72 WEEKS OF AGE	41	94-96

Body Weight

AT 18 WEEKS OF AGE	1.22 kg
AT 31 WEEKS OF AGE	1.50 kg
AT 72 WEEKS OF AGE	1.60 kg

Egg Production

- ▶ Egg Production starts 19 21 weeks of age
- Peak Production: 32-35 weeks of age
- Production gradually declines after 40 weeks of age @ 0.5 % per week
- Replacement 72 80 weeks of age
- Sometimes up to 90 100 weeks of age

Egg Weight / Size

Genetic factors
Nutritional factors
Managemental factors

- ► Energy and feed intake Overfeeding energy above recommended amounts tends to depress egg weights, as a consequence of lower feed intake.
- Protein and specific amino acids sulfur-containing amino acids (TSAA), such as methionine and cysteine.

AT 32 WEEKS OF AGE	52 gm
AT 52 WEEKS OF AGE	58 gm
AT 72 WEEKS OF AGE	60 gm

- Linoleic acid and fat level soybean oil or flaxseed.
- ► Feeding Programme Phase feeding is the best method of meeting these changing nutrient requirements.
- ▶ Body weight should be more than 1.4 kg
- ► Heat stress can depress egg weight.

Egg Quality / Breakage

Genetic factors
Nutritional factors
Managemental factors

- ▶ Age of Bird: As the hen ages shell thickness declines. Older flocks - larger eggs - break easily. The hen is genetically capable of placing only a finite amount of calcium in the shell.
- Heat stress respiratory alkalosis Sodium bicarbonate Ability of layers to convert vitamin D3 to its active form is reduced during heat stress.
- ► Proper Ca / P / Vitamin D ratio
 Only 50 60% of dietary calcium shell formation..
- Source and form of calcium: Oyster shell / stone grit / Shell grit

AT 32 WEEKS OF AGE	2-3%
AT 52 WEEKS OF AGE	3 -4 %
AT 72 WEEKS OF AGE	4 – 6 %

Calcium for egg production

Stone grit Mg – Wet droppings

Oyster shell / shell grit Slow release of Ca Egg shell powder

Feeding management of commercial broiler chicken

Thank you