

Methane emission from ruminants and its mitigationstrategies

Dr.A.Bharathidhasan, M.V.Sc., Ph.D.,

Associate Professor and Section Head,
Rabbit Breeding Unit,
Post Graduate Research Institute in Animal Sciences,
Kattpakkam, Tamil Nadu.

Methane Emission from Dairy Cattle and Its Mitigation Strategies

OBJECTIVE

To impart the knowledge on methane emission from ruminants and its mitigation strategies

Introduction

- Ruminants produce 20-30 % global methane
- production (80 Tg of CH4 per annum and 10 Tg in India)
- Livestock contribute 42 % of the total agriculture methane (28 % from enteric fermentation and 14 % from manure)
- CH4 represents a loss of feed energy by 8-12 %
- leads to lower animal production
- Methane production is an unavoidable product of rumen fermentation
- Associated with decreased propionate and increased acetate production
- Possible feeding strategy reducing the methane emission

Methane emission from various sector

GREEN HOUSE GASES

Methane Emission Of Indian Livestock (10.07 Tg/Y)

S.No	Animal	CH₄/head/yr
		(kg)
1	Cross breed cattle	38.9
2	Indigenous cattle	35.9
3	Buffaloe	76.6
4	Goats	4.94
5	Sheep	3.67
6	Other livestock	8.65

Methane Production Potential of Feedstuff

S.No.	Feedstuff	Average Methane Production Potential (ml/100 mg Truly digested substrate)
1	Tree leaves	1.55
2	Succulent roughages	1.91
3	Protein supplements	1.86
4	Cereal grains	2.58
5	Concentrate feeds	2.61
6	Crop residues	4.18

Regression Equation was developed		
MPP of feed (ml/100 mg Truly digested substrate)	= - 2.738 + 0.052*OM - 0.033*EE + 0.004*NDF	

Methane Emission from Ruminants

S.No.	Ruminants	Methane emission (g/animal/day)
1	Cattle	76.74
2	Buffalo	97.01
3	Sheep	11.63
4	Goat	10.14

Factors Influencing Methane Emission

Internal factors

> Type of the animal (species, age, body weight and its production level), methanogens, protozoa and feed resident time

External factors

- The amount and type of feed, addition of supplements, feed additives, daily feed intake, digestibility and feeding frequency and environment etc
- Low intake of highly digestible carbohydrates produce high methane production, but at high intake of highly digestible diet leads to low production of methane.
- ➤ Forage species, forage processing, the proportion of forage in the ration and the source of grain also influence methane production
- Protein and fibre content of feed

Possible Strategies to Reduce Methane Emission

Feeding Strategies on Reduction of Methane Emission

Feeding Strategies to Reduce Methane Emission for Dairy Cattle

- In India, livestock are fed with low quality crop residues and they are tends to produce more methane because of
 - high cell wall contents and
 - low digestibility
- Fermentation of cell wall carbohydrates produce more methane than starch and leads to greater loss of feed energy
 - Supplementation of concentrate along with crop residues improves the fibre digestion and reduces methane emission from ruminants
 - Protein supplementation in the diets increased the nutrient digestibility and decreased methane production in rumen
 - Complete feed block, Urea molasses mineral bock (UMMB) enhances fermentation thereby reduces methane generation in the rumen

Enhancing The Level of Feed Intake

- > High feed intake results in increased passage rate,
- > The extent of the microbial access to dry matter is decreased,
- which in turn reduces the rate and extent of fermentation and decrease Methane production

Changing The Feeding Frequency

- > Low frequency feeding tends to reduce methanogens and protozoal population in the rumen which leads to
 - > low methane generation and more propionate production
- ➤ Low frequency feeding increases fluctuations in rumen pH that can be inhibitory to methanogens
- Feeding of animals twice a day can help in reducing methane emission from dairy animals

Processing of Forages

➤ Grinding and pelleting of forages to enhance the efficiency of nutrient utilization tends to decrease methane emission from the rumen by about 20 -

40%

