

Quality control and assurance in feed manufacturing for animals/poultry

Dr. A Natarajan, M.V.Sc., Ph.D.,

Professor and Head,
Animal Feed Analytical and Quality Assurance Laboratory,
Veterinary College and Research Institute,
Namakkal – 637 002, Tamil Nadu

Quality control and assurance in feed manufacturing for animals / poultry

- 1. Feed Sampling and Processing for Analysis
- 2. Nutritional Quality Check of Raw Materials and Finished Feeds
- 3. Feed Toxins, their analysis and interpretation
- 4. Feed Analysis, current concepts, and developments
- 5. NEAR INFRA RED SPECTROSCOPY
 - A Tool For Quick Feed Analysis

Why Feed/Feed Ingredients should be sampled and analyzed?

- ► Feed, which is a combination of many raw feed ingredients, is responsible for overall performance of modern animals that show constant improvement in their genetic potential over 4-5 decades
 - modern dairy >25 litres/day, modern layer - 330 eggs/year modern broiler - 2.0 kg BW in 30 days
- ► The degree of quality of feed is the consistency in which the feed is formulated based on the nutrient profile

Why Feed/Feed Ingredients should be sampled and analyzed?

- ► The quality of raw materials should be controlled in such a way the feed's quality is not compromised
- The content of the raw materials and feeds should be known to make balanced feeds
- ► To prepare least cost feeds without compromising the minimum specifications
- To maintain the health of the animals, and the faith of feed producing organization among the customers

Why Feed/Feed Ingredients should be sampled and analyzed?

- ► To label the raw material lots with the log cards (to assist feed batch preparation so as to minimize the errors in feed manufacturing)
- ► To achieve all of above, SAMPLING of the raw materials and feed assumes importance

Ever increasing potential in layers.....

Year	In 52 weeks/One Year
1970s	270
1980s	285
1990s	310
2000s	325
2010s	335
2020s	336
2050s	345 ?

Ever increasing potential in broilers.....

Year	Days to teach 2.0 kg BW
1970s	60
1980s	55
1990s	50
2000s	40
2010s	35
2020s	30
2050s	< 25 ?

Production Efficiency of Cross Bred Animals

Year	Kg of Milk./Cycle of 305 days
1980s	3000
1990s	3600
2000s	3900
2020s	4200

Why is sampling of feed ingredients and feeds important?

- To know the physical and chemical status of the raw materials purchased
- To know the nutrient profile and anti-nutritional contents by analysis
- To assist on decision making on the use of such materials
- To keep the samples of such lots for a fixed period of time for future reference in case of any disputes that may arise at a later time
- To make payments as per the conditions laid between the consumer and supplier

Pattern of Grains That Are Stacked and Labeled in Feed Mills

Pattern of Soybean Meal That is Stacked and Labeled in Mills

General Requirements of Sampling

- Care should be there in drawing samples from the lot that the properties of the ingredient/feed are not affected and should be the best representative
- 2 Sampling instrument should be the one for the type of material and should be cleaned before sample is taken
- 3 Sample should be taken representing the lot for which a recommendation is there and strictly follow the same
- After the sample is drawn sufficiently to represent the lot, place it in tray-like vessel, mix well, spread evenly, quarter it and final three samples should be drawn

General Requirements of Sampling

- The three samples should be air-tight (to avoid reacting with air), sealed in self-locking bag or container (liquid), stored in safe, clean, dry and preferably light free storing place (Picture)
- 6 Each sample container should be carrying details of date of sampling, batch or code number, name of the supplier/manufacturer, and any other important details as deemed to be
- 7 Sampling should be done by a person agreed upon by the supplier, manufacturer, and buyer in the presence of the vendor and/or buyer representatives

Schematic Illustration of how the samples are to be drawn from the truck

Samplers used for taking samples

How to get sub-sample for lab analysis -Comminuted Sample of Maize

Step 1.

Step 2. (a)

Step 2. (b)

How to get sub-sample for lab analysis - Uniform spreading and dividing

Step 4. (a)

tep 5. (a)

Step 4. (b)

Step 5. (b)

How to get sub-sample for lab analysis - Quartering Method

Step 7. (a)

Step 8. (a)

Step 7. (b)

Step 8. (b)

Sample Cover with Label Requirements

Name of the firm	
Nam of the sample	
Sample marks	
Date of sampling	
Vehicle Details	
Required	1.
Parameters	2.
	3. and so on

Concluding Remarks

- Quality control of feed ingredients leads to quality assurance of final feeds
- Quality control starts with assessment of materials by physical and chemical methods
- Both requires examination with good and standard way of sampling
- ► A good representative sample gives a mean value of feed materials with least error possibility

Thank you