

Unit: Fluid therapy in cattle

Lesson: 2

Fluid therapy in cattle

Dr. G. Vijayakumar, M.V.Sc., Ph.D., PGDECM

Professor Veterinary University Peripheral Hospital Madhavaram Milk Colony Chennai-600 051 Tamil Nadu Veterinary and Animal Sciences University

Calculation of fluid requirement

Fluid deficit in litres = % dehydration x
 body weight

Example

Calculate the fluid deficit for a cow with 360 Kg body weight and 10% dehydrated

Body weight = 360 kg

Fluid deficit in liters

= % dehydration x body weight

= 10%

x 360

= 10/100

x 360

= 36 liters

Substituting in the water distribution

Total deficit = 36 litres

ECF = $TD \times 1/3$

 $= 36 \times 1/3$

= 12 litres

Substituting in the water distribution

```
Plasma = ECF x ¼

= 12 x ¼

= 3 litres

Or

Plasma = TD x 1/12

= 36 x 1/12

= 3 litres
```


Plasma:

Immediate requirement to be given within ½ to 1 hour

With 50% given in first 6 hours: 9 litres

Remaining within 12-24 hours: 24 litres

AcuteMore quickly

Calculation of body weight

- Formula
- Android app
- Weight measuring tape
- Weighing machine

Shaffer's formula

W= LG2 /300

- L Length of the animal from point of shoulder to point of buttocks in inches.
- G is the chest girth of the animal in inches.

Feed calculator

Calculation of body weight

TANUVAS FEED CALCULATOR app

- Google play stores

Calculation of Total Fluid requirements

- Volume of Replacement
- Volume of Maintenance
- Volume of Production requirement

Lisboa, 2004 Montana, 2017

Take home points

- Each 1 litre of milk produced require
 1 litre of water
- Body temp normal range: 101.5 to 102.5 F
- Each 1* increase in temperature raises above the normal range
- An additional 4.5- 5.0 litres of water above
 24 hour baseline requirement

Example

Calculate fluid requirement of a cow with temperature of 103.5*F and milk yield of 5 litres

Elevated Temp =

5 litres of water x 1*F = 5.0 L

Milk production =

1 litre of water / litre of milk \times 5 litres = 5.0 L

Over and above the maintenance requirement

Fluid Therapy in Adults

- 1. Most likely dehydration not overt shock.
- 2. Negative base excess.
 - Mature cattle twice as likely to be alkalotic.
 - Exceptions rumen acidosis, diarrhea.
- 3. Very often hypochloremic, hypokalemic and need to consider hypocalcemia.

Routes of fluid administration

Parenteral

- IV administration.
- Complete replacement is more practical in neonates.

Enteral - Oral

- Enteral routes should be used in adult cattle when possible based on management and cost of IV administration.
- Hypertonic solutions can augment enteral routes.

> First 4–6 h : Corrective therapy

100-150 mL/kg BW

>> 20−24 h : Maintenance therapy

60-150 ml/kg BW/24 h intravenous

or oral

Fluid therapy

- Quantity
- Rate of fluid therapy

Routine

@ 10-20ml/kg

RATE

> CALVES : 50-80 ml/kg IV

response in 30-60min

> Cattle : 30ml/kg IV

Rapid IV fluid adminstration

Fluid Therapy

Parenteral Therapy

- Crystalloids Solutions contain small particles that that pass easily from the bloodstream to cells and tissues
- Colloids

Isotonic solutions

- >> 280 to 300 mOsm/litre
- Expand circulating volume and replace actual fluid losses

Isotonic Solutions for parenteral use

Normal Saline : (0.9% NaCl) isotonic and

provides Na+ and Cl-

Ringer's solution : Isotonic and

provides Na+, Cl-, K+ and Ca2+

Ringer lactate solution: Isotonic and provides Na+, Cl-,

K+, Ca2+and lactate

DNS (5% glucose and 0.9% NaCl):

provides Na+ and Cl-

Colloids

- Large molecules
- Plasma volume expanders
- Require less volume
- Blood / albumin

Colloids

Dextran

Gelatin

Colloids

Blood transfusion

Oral restoration of fluid in cattle

Oral restoration of fluid in cattle

ORS in cattle

Infusion pump

ORS -Standard

Adult cattle

-	160 g
-	20 g
-	10 g
-	300 m
_	20 l

Calf

Sodium chloride	- 4 g
Pot chloride	- 1 g
Sodium acetate	- 4 g
Dextrose	- 10 g
Water	- 81

ORS

- ➤ 7 g of NaCl
- ➤ 1.25 g of KCl and
- ➤ 0.5 g of CaCl2 per
- ➤ 1 L of water

- ➤ 120 mmol/L of NaCl 16.8 mmol/L of KCl 4.5 mmol/L of CaCl2
- ➤ Osmolarity of 287 mOsm/L
- ➤ Rumen volumes : 13 to 17% of bodyweight
- ➤ 50-65 litres

ORS – Impaction

- ➤ Magnesium oxide 500 g
- ➤ Water 5 l

ORS

DETAILS

- Bullock
- Not passed dung for a period 6 days
- Anorectic
- **R/E**:

Mucus,
Absence of dung

Dung

Before treatment

After treatment

Calf - ORS

➤ Calves : < 8 %

Oral electrolyte solutions

2.5 g NaCl

1.5 g KCl

5.0 g Sodium acetate and

28.0 g Dextrose diluted in 1 L water

• 2 Liters ---- 3-4 times a day

ORS — **Recumbent cow**

Downer cow syndrome

➤ Sodium chloride - 44 g

➤ Potassium chloride - 180 g

➤ Water - 24 litres

Thank you