AN N

BIOLOGICAL CONTROL - DEFINITION – HISTORY -CLASSICAL EXAMPLES - FACTORS GOVERNING BIOLOGICAL CONTROL

Course Teacher Dr. A. Prabhuraj Professor Department of Agri. Entomology UAS, Raichur

Definition

- H. S. Smith (1919)- First used term "biological control" to signify the use of natural enemies (whether introduced or otherwise manipulated) to control insect pests.
- **B. P. DeBach (1964)** -Further refined the term and distinguished "natural control" from "biological control":

Natural control is "the maintenance of a more or less fluctuating population density of an organism within certain definable upper and lower limits over a period of time by the actions of abiotic and/or biotic environmental factors".

Why biological control.....

- Highly economical
- Selective with no side effects
- Self propagating and self-perpetuating
- Pest resistance to BCAs is virtually unknown
- > No harmful effects on humans, livestock's and other organisms
- Virtually permanent
- Efficiency, greater ability to search their prey
- Improved quality of produce
- Compatible with most of the IPM components

Biological control is "the action of parasites, predators, or pathogens in maintaining another organism's population density at a lower average than would occur in their absence".

Van den Bosch et al. (1982) -modified the terms somewhat and referred to:

 \triangleright

- Applied biological control as the "manipulation of natural enemies by man to control pestsö
 - **Natural biological control** as that "control that occurs without man's intervention"

History and development of biological control and classical examples of biological Control

- I. Early History
- A. 200 AD to 1200 AD : BC agents were used in augmentation
- **900 AD-** First use of red ant, *Oecophylla smaragidna* to control leaf chewing insects on mandarin trees
- 1200 AD-Ants were used for control of date palm pests in Yemen (south of Saudia Arabia).

-Usefulness of ladybird beetles recognized in control of aphids and scales

B. 1300 A.D. to 1799 A.D. : BC was just beginning to be recognized

- **1602 -** Aldrovandi noted the hymenopteran parasite, *Apanteles glomeratus* laying eggs in the pupae of the cabbage butterfly, *Pieris brassicae*
- 1726- The first insect pathogen was recognized by de Reaumur. It was a *Cordyceps* fungus on a noctuid
- 1762 Indian mynah bird, *Gracula religiosa* exported from India to Mauritius to control red locust, *Nomadacris septemfasciata*
- 1776- Control of the bedbug, *Cimex lectularius*, was successfully accomplished by release of the predatory pentatomid *Picromerus bidens* in Europe

C. 1800 A.D. to 1849 A.D. : During this period advances were made in Europe which were both applied and basic

II. The Intermediate Period: 1888 to 1955

A. 1888- Vadalia beetle, *Rodolia cardinalis* was brought from Australia and introduced into California (Control) cottony cushion scale, *Icerya purchasi* on citrus

It's a first well planned and successful classical biological control attempt made Overview of The Cottony Cushion Scale Project

- In 1868 Cottony cushion scale, *Icerya purchasi Maskell*, was introduced into California in ca. around the Menlo Park (CA) area (near San Francisco) by 1887 it spread to southern California.
- C. V. Riley (Chief of the Division of Entomology, USDA) employed Albert Koebele and
 D. W. Coquillett in research on control of the cottony cushion scale and found no methods to control.
- In1888 Koebele was sent to Australia to collect natural enemies of the scale, He sent ca.
 12,000 individuals of *Cryptochaetum iceryae and 129* individuals of *Rodolia cardinalis* (the vedalia beetle)

1898- Austalian Cryptlaemus montrouzieri in India on Coccus viridis

B. 1900 to 1930: New faces and more BC projects

- **1902-** The Lantana Weed Project in Hawaii (1902) First published work on BC of weeds.
- **1911-** Berliner described *Bacillus thuringiensis as causative agent of* bacterial disease of the Mediterranean flour moth
- **1919-** USDA laboratory for biological control established in France .
- **1927-** The Imperial Bureau of Entomology created the Farnham House Laboratory for BC work in England .

C. 1930 to 1955: Expansion and decline of BC

- > 1930 to 1940- Peak in BC activity in the world (57 different natural enemies established)
- ➢ World War II caused a sharp drop in BC activity with switch to pesticide research
- 1920 A parasitoid Aphelinus mali introduced from England into India to control Woolly aphid on Apple, Eriosoma lanigerum.
- 1929-31 Rodolia cardinalis imported into India (from USA) to control cottony cushion scale Icerya purchasi on Wattle trees.
- > 1947- The Commonwealth Bureau of Biological Control (CBBC) was established
- 1951- CBBC renamed as Commonwealth Institute for Biological Control (CIBC).
 Headquarters are currently in Trinidad, West Indies.
- 1955- The Commission Internationale de Lutte Biologique contre les Enemis des Cultures(CILB) was established.
- 1962- The CILB changed its name to the Organisation Internationale de Lutte Biologique contre les Animaux et les Plants Nuisibles.

Also known as the International Organization for Biological Control (IOBC).

III. The Modern Period: 1957 to Present

1958-60 - Parasitoid Prospatella perniciosus imported from China
1960 - Parasitoid Aphytis diaspidis imported from USA
Both parasitoids used to control Apple Sanjose scale Quadraspidiotus
perniciosus

1964 - Egg parasitoid Telenomus sp. imported from New Guinea to control Castor semilooper Achaea janata

1964- Paul DeBach and Evert I. Schliner (Division of Biological Control, University of California, Riverside) published an edited volume titled õBiological Control of Insect Pests and Weedsö

1965 - Predator *Platymeris laevicollis* introduced from Zanzibar to control coconut Rhinoceros beetle, *Oryctes rhinoceros*

Three approaches to biological control

- 1. CONSERVATION OF NATURAL ENEMIES: Actions that preserve and increase NE by environmental manipulation. e.g. Use of selective insecticides, provide alternate host and refugia for NE.
- 2. CLASSICAL BIOLOGICAL CONTROL: The control of a pest species by introduced natural enemies (Mainly to control the introduced pest)
- **3. AUGMENTATION OF NATURAL ENEMIES:** Propagation (mass culturing) and release of NE to increase its population. Two types,
 - (i) **Inoculative release:** Control expected from the progeny and subsequent generations only.
 - (ii) **Inundative release:** NE mass cultured and released to suppress pest directly e.g. *Trichogramma* sp. egg parasitoid, *Chrysoperla carnia* predator

Classical biological contr ol achieved in India

- 1795- Cochineal insect, Dactylopius ceylonicus was introduced from Brazil against carmine dye producing insect, D. coccus.
- 1983-1984- Exotic weevil, C. Salviniae from Australia against water fern, Salvinia molesta in a lily pond in Bangalore.
- 1982- Three exotic natural enemies were introduced viz., hydrophilic weevils ó Neochetina bruchi (Ex. Argentina) and N. eichhorniae (Ex. Argentina) and galumnid mite Orthogalumna terebrantis (Ex. Sout h America) against water hyacinth.
- 1926- The coccinellid beetle, Rodolia cardinalis against cottony cushion scale, I. purchasi

- 1983- The encyrtid parasitoid Leptomastix dactylopii against Planococcus citri and P. lilacinus from Trinidad, West Indies
- > 1983- A chrysomelid beetle Zygogramma bicolorata against parthenium from Mexico
- > 1988- The coccinellid predator, *Curinus coeruleus* against *H. cubana* from Thailand
- 1921- the agromyzid seedfly, *Ophiomyia lantanae* against *Lantana camara* from Hawaii (origin: Mexico) and released in south India
- > 1941- Tingid lace bug, *Teleonemia scrupulosa*, against *L. camara* from Australia
- > 1951- C. Montrouzieri against mealybugs
- 1963-The gallfly, *Procecidochares utilis* against Crofton Weed, *Ageratina adenophora* from New Zealand to Nilgiris (Tamil Nadu), Darjeeling and Kalimpong areas (West Bengal)
- 2010-Three exotic encyrtid parasitoids viz., Acerophagus papayae, Anagyrus loecki and Pseudleptomastix mexicana, against papaya mealybug, Paracoccus marginatus

Steps in Classic Biological Control

- 1. Evaluate the pest problem
- 2. Foreign exploration
- 3. Selection
- 4. Quarantine processing
- 5. Mass propagation
- 6. Field colonization (release)
- 7. Evaluation of impact

100 successes in the past 100 years!!

Biocontrol agents employed in Biological control programme

A. Predator - An animal that feeds upon other animals (prey) that are either smaller or weaker than itself

Characteristics of Predators

- An immature predator will consume a number of prey in the process of completing development to the adult stage.
- > The predator is free living in all life stages except the egg.
- > The eggs are usually laid in the vicinity of the prey.
- Upon hatching from the egg, predator nymphs or larvae actively seek out, capture, kill, and consume prey.
- Many predators are carnivorous in both the immature and adult stages (but there are exceptions [e.g., syrphid flies]).

Potential Insect Predators

Order	Family	Species	Hosts
Coleoptera	Coccinellidae	Cryptolaemus montrouzieri	Aphids, Scales,
		Rodalia cardinalis	Mealybugs,
		Cheilomenes sexmaculata	Eggs of lepidopterans
		Harmonia octomaculata	
		Chilocoris nigrata	
		Scymnus coccivora	
		Parascymnus horni	
		Coccinella transversalis	

C. montrouzieri

R. cardinalis

C. septempunctata

C. sexmaculata

S. coccivora

Contd...

	Cicindelidae	Cicindella sexmaculata	Aphids, Scales, Mealybugs, Eggs of lepidopterans
	Carabidae	Cosnoidea indica, Anthia sexguttata	Aphids, Scales, Mealybugs, Eggs of lepidopterans
Odonata		Dragon fly and damsel flies	Caterpillars
Mantodea		Mantis religiosa	Caterpillars and Grasshoppers

Dragon fly

Mantis religiosa

Anthia sexguttata

Asilus sp.

Ischiodon scutellaris

Contd...

Order	Family	Species	Hosts
Neuroptera	Chrysopidae	Chrysoperla zastrowi arabica	Aphids, Scales, Mealybugs, Eggs of
	Hemerobiidae	Micromus igoratus	lepidopterans
Hemiptera	Miridae	Cyrtorrhinus lividipennis	Hemipterans
	Ruduviidae	Platymeris laevicollis	Grubs
	Pentatomidae	Eucanthecona furcelleta	Caterpillars
Lepidoptera	Epipyropidae	Dipha aphidivora	Aphids
Diptera	Asilidae	Asilus sp	Small insects
	Syrphidae	Ischiodon scutellaris	Small insects

C. zastrowi arabica

C. lividipennis

Dipha aphidivora

Micromus igoratus

Field applications.....

Species	Host/s	quantity
Cryptolaemus montrouzieri	mealybugs	3000-4000/ha
Rodalia cardinalis	Aphids/scales/mealy bugs	3000-4000/ha
Chilocoris nigrata	Aphids/scales/mealy bugs	3000-4000/ha 10-12/plant
Chrysoperla zastrowi arabica	Aphids/scales/mealy bugs/ Eggs of lepidopterans	1.00-1.50 lakh/ha
Micromus igoratus	Aphids	5000-6000 /ha
Cyrtorrhinus lividipennis	Hemipterans	50-60 bugs/100m ²
Dipha aphidivora	Aphids	5000-6000 /ha