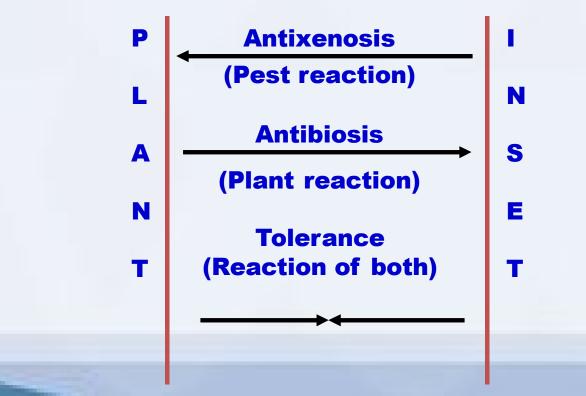
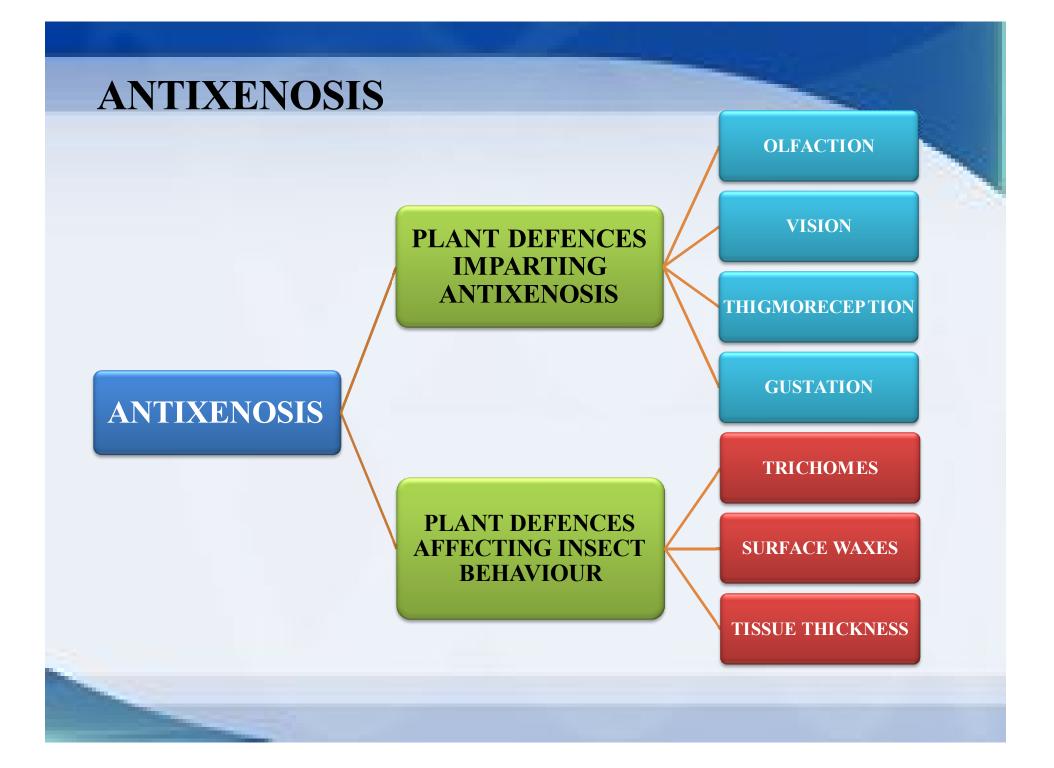

TYPES AND MECHANISMS


Course teacher Dr. A. Prabhuraj Professor Department of Entomology UAS, Raichur

MECHANISM OF RESISTANCE

Three fold basis Resistance based insect plant interaction according to Painter (1951) is



Antixenosis (Non acceptance)

Xeno- meaning guest

Type of resistance where insect will not accept for feeding & breeding even if there is no alternative source.

- Host plant characters responsible for non-preference of the insects for shelter, oviposition, feeding, etc.
- It denotes presence of morphological or chemcial factor which alter insect behaviour resulting in poor establishment of the insect

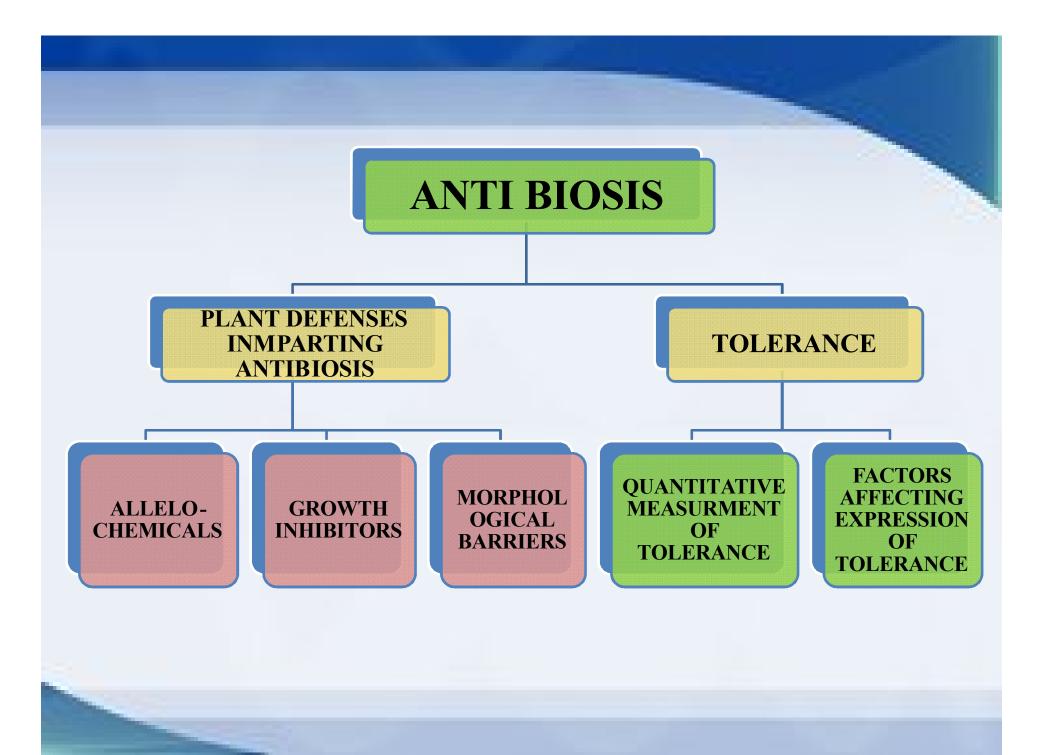
Examples for antixenosis

Trichomes in cotton - resistant to whitefly

Plant shape and colour also play a role in non preference

Wax bloom on crucifer leaves - deter feeding by DBM

Open panicle of sorghum - Supports less Helicoverpa


Table 1. Important non preference characters

Insect pests	Host plant characters	
	Non-preference	Preference
Bollworms	Smooth leaves	Hairy leaves
	Nectarileness	Nectarine
	Long pedicel	Short pedicel
	Thick boll rind	Thin boll rind
	Okra leaf	Soft boll rind
Boll weevil	Frego bract	Normal bract
	Red plant body	Green plant body
	Hairy leaves	Smooth leaves
	Leathery leaves	Succulent leaves
Whitefly	Smooth leaves	Hairy leaves
	Thin leaves	Normal leaves

ANTIBIOSIS

- Adverse effect of the host plant on the biology (survival, development and reproduction) of the insects and their progeny due to the biochemical and biophysical factors present in it
- ["] It may be due to :
 - a. Presence of toxic substances-
 - b. Absence of sufficient amount of essential nutrients
 - c. Nutrient imbalance/improper utilization of nutrients

Chemical means	Physical means
DIMBOA (Dihydroxy methyl benzoxazin) against European corn borer	Thick cuticle
Gossypol against American boll worm	Glandular hairs
Sinigrin against Aphids	Silica deposits
Cucurbitacin against Myzus persicae	Tight leaf sheath

- The effects may be

<u>Direct</u>

1) Growth

2) Development

3) Reproduction

4) Survival

5) General vigour

<u>Indirect</u>

- 1) Vulnerability to biocontrol agents
- 2) Vulnerability to environmental aberration
 - Overal all effect is reduction in rate of population increase
 - Often mechanisms of antixenosis and antibiosis overlap

Toxins of Plant origin

//

- " Lectin
- ["] Lectin phytoheamaglutinin
- " Wheat germ agglutinin

Enzymes & Enzyme inhibitors

- " Protease inhibitors
- " Trypsin inhibitors
- " Alpha amylase inhibitors

Snowdrop lectin, *Galanthus nivalis* Sucking pests, Pulse beetle and storage pests

- ["] Leguminacea
- " Solanaceae
- " Poaceae

Table 2. Biochemical components

Components	Confer resistance	
High gossypol	Bollworms, tobacco budworm and red spider mite	
High phenol	Bollworms	
High condensed tannin	Bollworms, aphids, lygus bugs, red spider mites and leaf miners	
High tannin		
In leaves	Jassids	
In buds	Bollworm tolerance	
Low sugar		
In anther	Boll weevil and bollworms	

Jenkins, 1994 (USA)

Tolerance

- Ability of the plant to grow and reproduce and even repair injury to a marked degree inspite of supporting a population approximately equal to that damaging a susceptible host
- Plant is damaged but there is no economic yield loss or lowering of quality
- Often tolerance is confused with low level of resistance or moderate resistance
- It totally different from other two causes by not coming in/on to the way of insect activity

- Therefore, it may be regarded as susceptible based on insect number or damage
- It is an adaptive mechanism for the survival of plant and is more or less independent of the effect upon the insect
- This type of resistance refers strictly to resultant effects and not to mechanisms.

Insect-resistant cultivar developed for different crops in India

Common name	Scientific name	Cultivar
Cotton		
American bollworm	Helicoverpa armigera	Sujata, Abadhita, Sujay
Pink bollworm	Pectinophora gossypiella	LD135, Sujata, Abadhita
Spotted bollworm	Earias vittella	LD1245, Sanguineum
Cotton jassid	Amarsca bigutulla	Mahalaxmi, Sujay
Sugarcane		
Internode borer	Chilo sacchariphagus indicus	Co6806, Co975
Top borer	Scirpophaga exercerptalis	Co7224, Co1158
White grubs	Holotrichia spp.	Co6304, Co5510
Maize		
Maize shoot fly	Atherigona sp.	DMR5, VC80
Pink stem borer	Sesamia innferens	Deccan 101 and 103
Rice		
Brown plant hopper	Nilaparvata lugens	IET7575, Jyoti
Gall midge	Oaseolia virens	Phalguna, IR36
Yellow stem borer	Scirpophaga incertulas	Ratna, MTU5849

Groundnut		
Leaf miner	Aproaerema modicella	ICGV86031, ICG57
Tobacco leaf caterpillar	Spodoptera litura	ICGV86031, FDRS 10
Soyabean		
Leaf miner	Aproaerema modicella	Nimsoy, PL507
Chick pea		
Pod borer	Helicoverpa armigera	Anupani, ICCV10, Dulia
Pigeon pea		
Pod borer	Helicoverpa armigera	Bori, ICPL332, BSMR 1
Brinjal		
Shoot and fruit borer	Leucinodes orbonalis	Pusa purple long, SM68
Jassid	Empoasca kerri	Krishna, UPB 1
Potato		
Potato tuber moth	Phthorimaea operculella	QB 1A 21-29
Tomato		
Fruit borer	Helicoverpa armigera	Pant bahar, BT 1, T 32

A. Advantages of host plant resistance

- Cumulative and persistent
- No additional cost to grower (other than purchasing seed resistant to pests.
- > No harmful residues
- ➢ No damage to beneficial fauna
- Integrates effectively with other control methods
- Conserves bio-control agents
- Most useful in low economic crops.

B. Primary disadvantages of host plant resistance

- Several years to develop for one pest, longer for multiple resistance
- Different varieties needed for different geographical areas
- Need for good agronomic quality along with resistance
- Resistance most offen found in species of off types of poor agronomic quality require much time to develop to an acceptant variety
- Biotypes. Insects adapt or change so as to feed on formerly resistant plants
- Incompatibility of resistance character with other characters
- Replacement of varieties by better yielders

Compatibility of HPR in IPM

a. Compatibility with chemical control

- ➢HPR enhances efficacy of insecticides
- ➤Higher mortality of leaf hoppers and plant hoppers in resistant variety compared to susceptible variety
- Lower concentration of insecticide is sufficient to control insects on resistant variety

b. Compatibility with biological control

- Resistant varieties reduce pest numbers thus shifting pest: Predatory (or parasitoid) ratio favourable for biological control. e.g. Predatory activity of mirid bug *Cyrtorhinus lividipennis on BPH was more on a resistant rice variety IR 36* than susceptible variety IR 8
- ≻Insects feeding on resistant varieties are more susceptible to virus disease (NPV)

c. Compatibility with cultural method

Cultural practices can help in better utilization of resistant varieties. e.g. Use of short duration, pest resistant plants effective against cotton boll weevil in USA.

Advantages of HPR as a component in IPM

- Specificity: Specific to the target pest. Natural enemies unaffected
- Cumulative effect: Lasts for many successive generations
- Eco-friendly: No pollution. No effect on man and animals
- Easily adoptable: High yielding insect resistant variety easily accepted and adopted by farmers. Less cost.
- Effectiveness: Res. variety increases efficacy of insecticides and natural enemies
- Compatability: HPR can be combined with all other components of IPM
- Decreased pesticide application: Resistant varieties requires less frequent and low doses of insecticides
- Persistence: Some varieties have durable resistance for long periods
- Unique situations: HPR effective where other control measures are less effective
 - e.g. a. When timing of application is critical
 - b. Crop of low economic value
 - c. Pest is continuously present and is a single limiting factor

THANK YOU