Resistance management

Development of an ability to tolerate a dose of an insecticides, which would prove lethal to the majority of individuals in the normal population of the same species.

How do resistance develop?

History

- With the discovery of Miracle powder "DDT" people thought that the problem of pest is solved for ever. They have won the war against insects.
- But, Scientist got their first jolt in 1946, when house fly showed resistance against their Miracle powder, DDT.
- Earlier, in 1914, Melander found San Jose Scale showing resistance to Lime Sulphur sprays.

CAN INSECTS BECOME RESISTANT TO SPRAYS?1

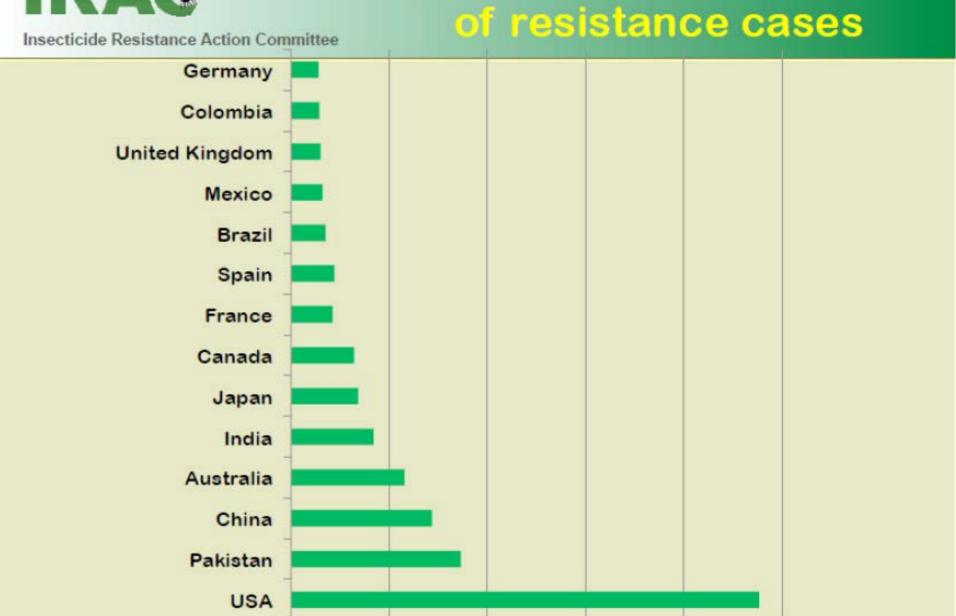
By A. L. Melander, Entomologist, Washington Agricultural Experiment Station

- Later, 1941 Colorado potato beetle
- 1944 Pediculus humanus shown resistance to DDT
- After 1946 a succession of resistance reports just poured in.

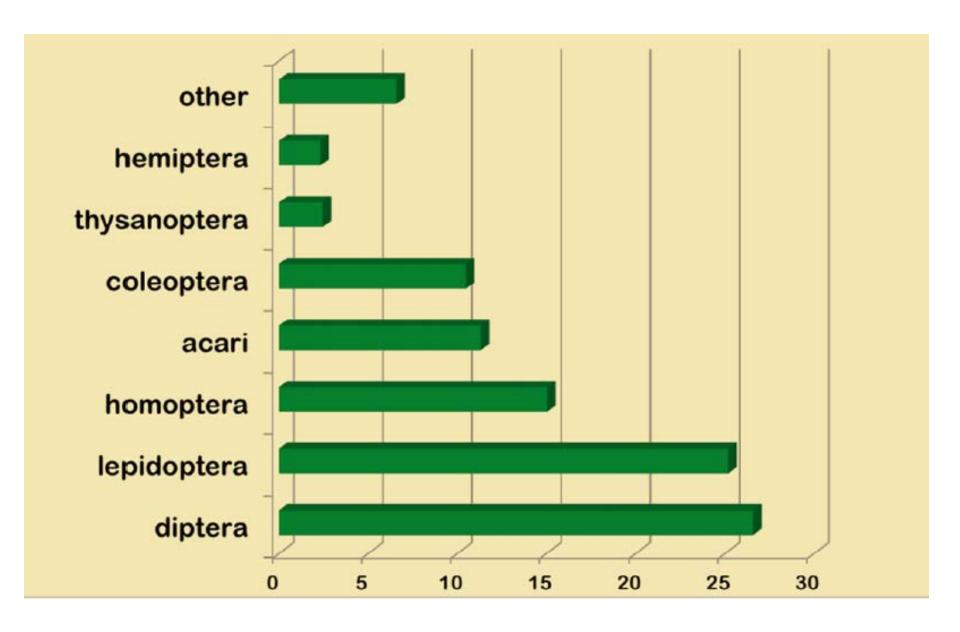
First Resistance Reports

	Insect pests	Insecticide	Place	Author
International	Sanjose scale. Quadraspidiotus perniciosus L.	Lime Sulfur	Washington	Melander (1914)
National	Singhara beetle, Galerucella birmanica (Jacoby)	DDT, BHC	Delhi	Pradhan et al., 1963

List of Resistant Insects in Abroad


Common name	Scientific name	Resistant to	Location	Authors
Sanjose scale	Quadraspidiotus perniciosus L.	Lime-sulphur	Washington	Melander (1914)
Tobacco bud worm	Heliothis virescence (F.)	Pyrethroids, OP and Carbamates	Mississippi	Elzen et al., 1990
Pear Psylla	Cacopsylla pyri L.	OP compounds	France	Bues and Boudinhon (2002)
Tobacco bud worm	Heliothis virescence (F.)	Pyrethroids	Mexico	Teran Vargas et al., 2005
DВМ	<i>Plutella xylostella</i> L.	Chlorantraniliprole	China	Wang and Wu (2012)
Lady beetle	<i>Eriopis connexa</i> (Germer)	Lambda cyhalothrin	Brazil	Agna et al., 2013
DBM	<i>Plutella xylostella</i> L.	Flubendiamide	China	Wang et al., 2013

List of resistant insects in India


Common name	Scientific name	Resistant to	Author
Singhara beetle	Galerucella birmanica (Jacoby)	DDT, BHC	Pradhan et al., 1963
Rice leaf folder	Cnaphalocrocis medinalis (Guenee)	Chlorpyriphos, Quinalphos	Anandan and Regupathy, 1997
Cotton bollworm	Helicoverpa armigera (Hubner)	OP, Carbamates	Ren et al., 2002
Diamond Back Moth	Plutella xylostella (Lin.)	Monocrotophos	Shivaramabhatt (1999)
Tobacco caterpillar	Spodoptera litura (Fab.)	Chlorpyriphos, fenvalerate	Niranjan Kumar & Regupathy, 2001
Rice BPH	Nilaparvata lugens (Stal)	Imidacloprid	Liu et al., 2005
Cotton whitefly	Bemisia tabaci (Gennadius)	Imidacloprid	El Kady et al., 2003
Spotted bollworm	Earias vittella (Fabricius)	Carbamates	Kranthi et al., 2001

Top 14 countries by number of resistance cases

Resistance across pest orders

Reasons for insect developing resistance

- Continued and frequent use of a pesticide
- Use of application rates -below or above those recommended on the label.
- Poor coverage of the area being treated
- Frequent treatment of organisms with large populations and short generation times.
- Failure to incorporate non-pesticidal control practices when possible
- Simultaneous treatment of larval and adult stages with single or related compounds.
- Genetic mutation and inheritance

IRM Strategies

- Use of judicious and Recommended dose of insecticides
- Mode of action, target-site resistance and cross-resistance: use insecticide having different target sites.
- Alteration of chemistry: Alternate use of chemical groups with different MoAs will slow down the process of selection for resistance.
- Use of cultural practices: incorporate all available methods of control will reduce selection pressure from the insecticide.
- Understanding of the insect life cycle
- Use of insecticide mixtures
- Use of synergists to suppress the insects' detoxification mechanism
- Protect beneficial insects.