

### INSECT PEST MANAGEMENT

(in respect of current scenario)

#### Indiscriminate use of Chemical Pesticides

- Insecticidal resistance
- Environmental residues
- Adverse health effects

#### **Need to develop strategies**

- Ecological Compatible
- Environmentally safe
- •Reproductive suppression (in lieu of Instant Mortality)

#### Most suitable alternative is to opt for

- Non-chemical control
- Biological / Parabiological control

## Pest Management through Radiation Technology

- Sterile Insect Technique (SIT)
- Other Radio-Genetic Tactics

(F-1 sterility, Chromosomal aberrations)

- Biological control
- Radiation hormesis
- Dis-infestation of stored products & agrocommodities for quarantine/ phytosanitation



## Pest Management through Radiation Technology

Advantages of Nuclear Techniques

- Ecologically Compatible
- Parabiological approach
- No transgenic
- Environmentally safe
- No radio-activity
- No residue




## Characteristics of Electromagnetic Spectrum

| Types of EM radiation | Frequency                                       | Wavelength                           | Quantum                                    | Nature of chemical effect |
|-----------------------|-------------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------|
| Gamma<br>rays         | > 10 <sup>20</sup> Hz                           | < 10 <sup>-12</sup> m                | > 1MeV                                     | lonising                  |
| X-rays                | 3×10 <sup>16</sup> Hz                           | 100nm -10<br>nm                      | ≥124 eV                                    | Ionising                  |
| UV rays               | 7.5×10 <sup>14</sup> - 3×10 <sup>16</sup><br>Hz | 400nm –<br>100nm                     | 3.1-124 eV                                 | Non-ionising              |
| Visible rays          | 4-7.5×10 <sup>14</sup> Hz                       | 750-400nm                            | 1.65-3.1eV                                 | Non-ionising              |
| IR rays               | 0.003-4×10 <sup>14</sup> Hz                     | 1mm – 750<br>nm                      | 0.0012-1.65<br>eV                          | Non-ionising              |
| Microwave             | 3×10 <sup>9</sup> -3×10 <sup>11</sup><br>Hz     | 10 <sup>-3</sup> -10 <sup>-1</sup> m | 2×10 <sup>-24</sup> –2×10 <sup>-22</sup> J | Non-ionising              |
| Radiowave             | <3×10 <sup>9</sup> Hz                           | 10 <sup>-1</sup> m                   | <2×10 <sup>-24</sup> J                     | Non-ionising              |

# Estimated sterilization doses for insects from different taxonomic orders

| Order (Gy)         | Sterlization Doses |
|--------------------|--------------------|
| Coleoptera<br>200  | 13 -               |
| Dictyoptera<br>120 | 5 -                |
| Diptera<br>200     | 10 -               |
| Hemiptera<br>200   | 10-                |
| Hymenoptera<br>200 | 80 -               |
| Lepidoptera<br>400 | 40 -               |

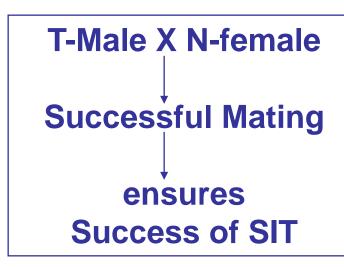
#### **An Environment Friendly Pest Management Approach**

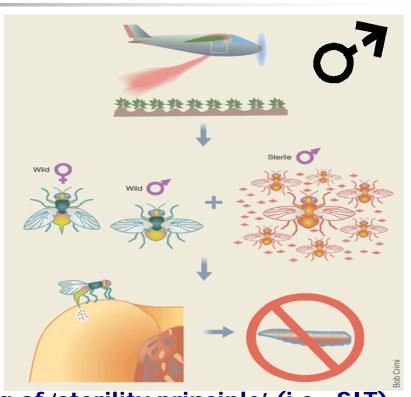


## Area-Wide Pest Management



- Population suppression
- Large area augmentation
- Sterile insects
- Parasitoids
- Synergistic


### Sterile Insect Technique(SIT)

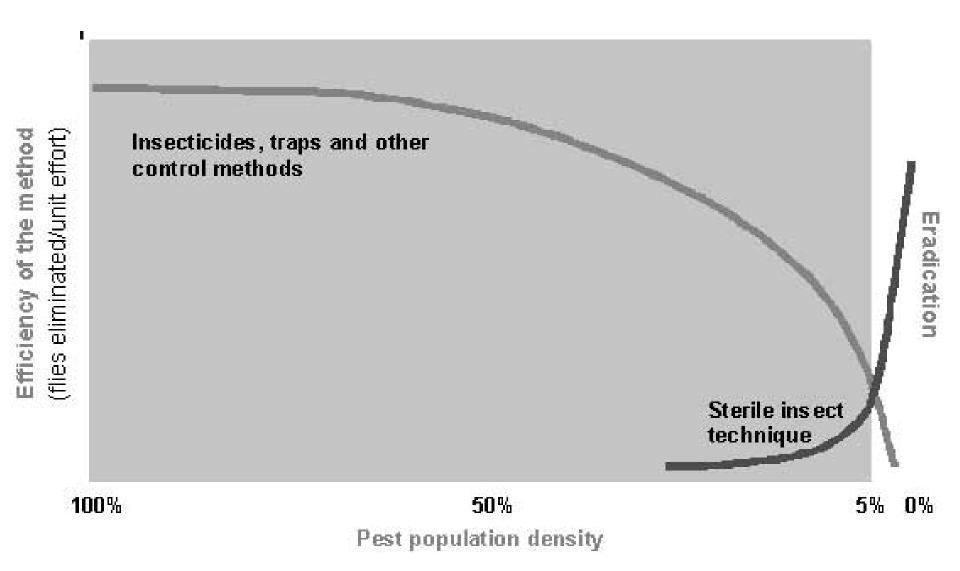

- •E. F. Knipling conceived an approach to insect control by SIT
- Screwworm fly (Cochliomyia hominivorax) eradication : Foremost successful example
- Sterile insects are released into environment in large numbers (10 to 100 x)
- Native female mating with a sterile male produce <u>fertilized</u> but <u>sterile</u> eggs
- Success of screwworm eradication through <u>SIT</u> program led to investigations on this radiogenetic technique for control of many other pests.
- IAEA runs Coordinated Research programmes
   & Technical projects to promote SIT



## Sterile Insect Technique(SIT)

DEFINITION: A genetic method of pest suppression involving mass release of compatible but sterile insects into a wild fertile pest population to overwhelm & suppress its reproductive capacity, often eventually to the point of extinction.





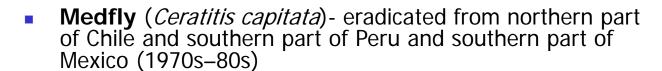

Main components of employing of 'sterility principle' (i.e., SIT)

- (i) Rearing
- (iii) Competitiveness
- (v) Evaluation

- (ii) Treatment
- (iv) Release
- (vi) Re-infestation

#### Optimizing the efficiency of SIT in IPM




Optimizing the efficiency of an insect pest intervention campaign by using conventional control and SIT in an integrated, phased approach



#### Some success stories...

- Screwworm fly (Cochliomyia hominivorax) eradicated from the United States (1950s-90s), Netherland (Curaçao, 1954) and Libya (1990-92)
- Mexican fruit fly (Anastrepha ludens) eradicated from most of northern Mexico.





 Sweet potato weevil (Cylas formicarius) eradicated from Kume Island, Okinawa, Japan (1994-99).

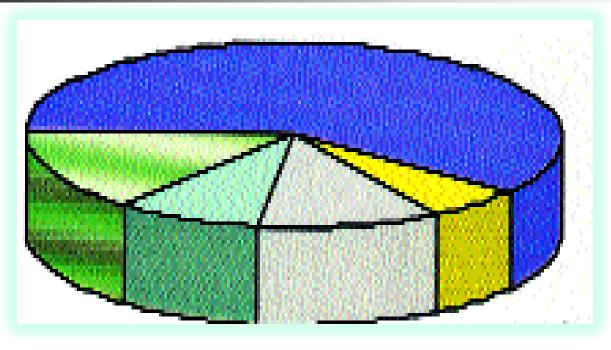
Etc....














### Various Insect Species subjected to SIT

- Screwworm fly / USA, Mexico, South America, Libya
- Mediterranean Fruit Fly(Ceratitis capitata Wiedemann)/USA(Cal.), Mexico
- Melon Fly (Dacus cucurbitae Coquillett)/Japan, Taiwan
- Pink Bollworm (Pectinophora gossypiella Saunders)/ USA (California)
- Tsetse Fly (Glossina species)/ Tanzania, Zimbabwe, Upper Volta
- Mosquitoes (various spp.) USA (Florida), East Africa, Venezuela
- Boll Weevil (Anthonomus grandis Boheman)/Southeastern USA
- Mexican Fruit Fly, (Anastrepha ludens Loew)/USA (Texas), Mexico
- Gypsy Moth (Lymantria dispar Linn.)/ Northeastern USA, Canada
- Stable Fly (Stomoxys calcitrans Linn.)/USA (St. Croix, Virgin Islands –exptl)
- Horn Fly (Haematobia irritans Linnaeus)/ USA (Texas experimental)
- Corn Earworm (Helicoverpa zea Boddie)/ USA (St. Croix, VI)
- Tobacco Hornworm (Manduca sexta Linnaeus)/ USA (St. Croix, VI)

# Continents adopting SIT



America
60%

Africa 140/0

Europe 9%

Asia 11º/0

Australia 6%