

Neem

- Derived from seeds of Azadirachta indica.
- Active ingredient- Azadirachtin present in seeds and leaves.
- Concentration: Neem kernel based EC and oil.
- Neem oil, Neem cake, neem kernel extract and suspension.
- Ex: Gronim, Neemazal, Achook, Nimbecedine.

Preparation of Neem Seed Kernel extracts 500 to 2000 ml per tank (10 litres capacity)

Take neem seed kernel
Fresh seeds:3-5 kgs or old seeds:5 kgs/acre

Remove the outer seed coat and use only the kernel.

Pound the kernel gently

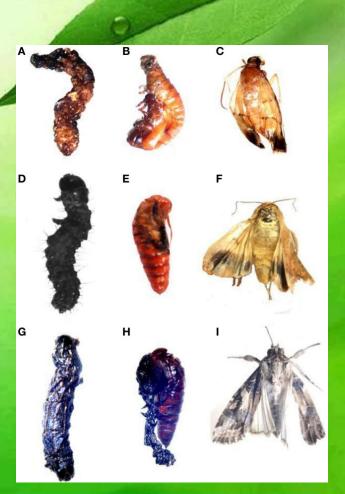
Tie it loosely with a cotton cloth

Soak this overnight in a vessel containing 10 litres of water

On filtering, 6-7 litres of extract can be obtained

500-1000 ml of this extract should be diluted with 9 $\frac{1}{2}$ or 9 litres of water

Before spraying khadi soap solution @ 10 ml/litre should be added to help the extract stick well to the leaf surface.



Commercially produced Neem-based pesticides in India

	Trade name	Formulation(s)		Trade name	Formulation(s)
1	Achook	0.5 % aza, nimbicinol, epinimbocinol	8	Neemax	Seed powder (300 ppm aza)
2	Bioneem	0.03 % aza	9	Neemicide	300 ppm
3	Econeem	0.3 % aza, 1.0 % aza	10	Ozoneem	300, 1500, 3000, 10,000, 50,000 ppm aza
4	Limonool	75 EC (0.3% aza)	11	RD-9 Repelin	100 EC aza, Pongamia, Annona
5	Margocide- CK	20 EC (0.15% aza)	12	Shaktiman	0.05 % aza
6	Margocide-O	80 EC (0.03% aza)	13	Neemosan	0.03 % aza
7	Neem gold	0.15 % aza	14	Neemrich	0.03 % aza

Mode of Action

- Affect insect vigour, longevity and fecundity.
- Antifeedant action, insect growth regulatory activity, oviposition deterrent, repellent action reduction of life span of adults and intermediates formation (Larvalpupal, nymphal-adult and pupaladult).

Larval deformities of Lepidoptera

Rotenone

- Isolated from roots of leguminous plants Lonchocarpus or Derris eliptica.
- Broad spectrum contact and stomach poisons.
- Target pests: Caterpillars, aphids, suckers and other pests.
- MoA: inhibits respiratory metabolism (electron transport chain in the mitochondria).
- Use: Dust 0.75 1.5 % rotenone.

Sabadilla

• Derived from seeds of tropical lily, Schoenocaulon officinale.

- Alkaloids -> Cevadine + Veratridine = Veratrine
 - 2:1

- Contact poison.
- Mode of action: nerve cell membrane action, causing loss of nerve cell membrane action, causing loss of nerve function, paralysis and death.
- Sabadilla is effectively synergized by PBO or MGK 264.

Ryanodine

- Extracted from woody stems of south American shrub, Ryania speciosa.
- Alkaloid with insecticidal activity---- Ryanoids.
- Act as muscular poison by blacking the conversion of ADP to ATP in striated muscles.
- Slow acting stomach poisons.
- Target pests: thrips and worms.
- Dust: 20-40 %.

Nicotine

- Obtained from tobacco plants,

 Nicotiana tobaccum and N. rustica
- Mode of action: mimics acetylcholine in the nerve synapse causing tremors, loss of co-ordination and eventually death.
- Extremely fast acting, causing sever disruption and failure of nervous system.
- Fumigant (Nicotine) or Dust (Nicotine sulphate).
- Available as nicotine sulphate 40 % (Black leaf 40).
- Target pests: thrips, leaf hoppers, mealy bugs and leaf miners.

Pyrethrum

- Dried flowers of Chrysantheum cinerarifolium.
- Toxic constituents → Pyrethrins
- Mode of action: Pyrethrins exert their toxic effects by disrupting the sodium and potassium ion exchange process in insect nerve fibres and interrupting the normal transmission of nerve impulses.
- Pyrethrins applied with PBO (Piperonyl butoxide).

Limonene and Linanool

- Citrus peel extracts.
- Limonene: a terpene, purified from oil by steam distillation.
- Linanool: terpene alcohol, found in small quantities in citrus peel.
- Target pests: aphids, mites and fleas
- Act as nerve toxin and stomach poisons(Limonene)
- Affects ion transport and release of acetylcholine esterase (Linanool).

Other essential plant oils: Herbal repellents and insecticides

- Repellents: oils of cedar, lavender, eucalyptus, pennyroyal, and citronella.
- Target pests: pets and humans to repel fleas and mosquitoes.
- Citronella: sold in the form of candles to repel mosquitoes.

Mechanism of action of pesticides of plant origin

Compound	Plant source	System	Mechanism of action
Essential oils	Azadirachta indica, Mentha spp., Lavendula spp.	Cholinergic system	Inhibition of Acetylcholinesterase
Nicotine	Nicotiana spp., Haloxylon salicornicum, Stemona japonicum	Cholinergic system	Cholinergic acetylcholine nicotinic receptor Agonist/antagonist
Pyrethrin	Chrysanthemum cinerariaefolium	Mitochondrial system	Sodium and potassium ion exchange disruption
Rotenone	Lonchocarpus spp.	Mitochondrial system	Inhibitor of cellular respiration (mitochondrial complex I electron transport inhibitor (METI)
Ryanodine	Ryania spp	Mitochondrial system	Affect calcium channels
Sabadilla	Schoenocaulon officinale	Mitochondrial system	Affect nerve cell membrane action
Azadirachtin	Azadiractina indica	Miscellaneous	Hormonal balance disruption

Utilization of Botanicals in Pest Management

- Direct spray applications of extracts of biologically effective plant products.
- Used as soil amendment → Soil inhabiting pests: white grubs and root knot nematodes.
- Intercropping/mixed cropping: Marigold with tomato or brinjal
 → minimize incidences of root knot nematodes.
- Used as grain/potato protectants against insects in storage. Eg: Azadirachtin, kernel power or oil, leaves of senwar, bel, wild sage, lantana.
- Used as synergists/ binders for synthetic pesticides to enhance the biological activity of the pesticides. Eg: Pyrethrum with piperonyl butoxide; sesamum oil with permethrin dusts and neem oil.
- Use of botanical based synthetic/ commercial formulations neem and tobacco.

Neem extracts and recommendation

Crop	pests	Recommended botanical
Cotton	Jassids, aphids, thrips, Whiteflies, bolloworm	Neem products @ 1500 ppm
Rice	Stem borer, hoppers	NSKE 5%
Rice	Thrips	2% neem oil or 10% neem cake extract
Groundnut	Defoliators and mites	5 % NSKE or Crude neem oil + 2 % teepol
Pigeonpea	Pod borer	5% NSKE
Chickpea	Helicoverpa	5% NSKE
Brinjal	Sucking pests	5% NSKE 3 sprays
Okra	Leaf hopper, whiteflies and mites	5% NSKE 3 sprays
Cabbage and Cauliflower	-	5% NSKE
Coconut	Mites	Neem formulation (5ml) + <i>Hirsutella thompsonii</i> (5g)

Neem Cake and its recommendation in different crops

Crops	Dose	Target organisms
Orange	200 kg/ha	Citrus nematode
Paddy	2.5q/ha or 100 g/m ²	Meloidogyne graminicola
Sugarcane	200 kg/ha	Root grubs
Banana	200 kg/ha	Root knot nematodes
Tomato	200 kg/ha	Seedling nematodes

Advantages of botanical pesticides over synthetic pesticides

- Low mammalian toxicity thus constitute least or no health hazards and environmental pollution.
- No risk of developing pest resistance.
- Less hazards to non-target organisms.
- No adverse effect on plant growth, seed viability and cooking quality of the grains.
- Less expensive and easily available because of their natural occurrence especially in oriental countries.

Drawbacks and barriers to commercialization

- Sustainability of the botanical resource
- Standardization of chemically complex extracts
- Regulatory approval
 - Rapid degradation
 - Market opportunities for botanical pesticides
 - Weather conditions

Integration with other tactics

1.Integration with biological control:

- > eg: application of NSKE against S. litura did not affect the emergence of egg parasitoids Telenomus remus and predator Brinckochrysa scelestes.
- Neem oil application in chinaberry and custard apple and Neem extract in rice against stem borer and hoppers:
 - no adverse affect on predatory spider *Lycosa pseudoannulata* and slightly toxic to mirid bug predator *Cyrtorhinus lividipennis*.
- First field trial with neem oil: sorghum aphid *Melanopsis* sacchari no adverse affect on syrphids and coccinellids.
- Neem oil 50% has no adverse effect on Chrysoperla cornea and Tetrastichus howardi