Select a Statistical Model

Statistical Modeling

Prof. J. Ramkumar

Department of ME & Design

Indian Institute of Technology Kanpur

• The use of mathematical models and statistical assumptions to generate sample data and make predictions about the real world.

• A statistical model is a collection of probability distributions on a set of all possible outcomes of an experiment.

Reported happiness as a function of income

MedTech ideas to products IMAGINEERING LAB I IIT KANPUR

- Supervised

Supervised data modeling will learn the relationship between input and output through labelled training data:

1. Regression model:

- A type of predictive statistical model that analyzes the relationship between a dependent and an independent variable.
- Common regression models include logistic, polynomial, and linear regression models.

2. Classification model:

- A type of machine learning in which an algorithm analyzes an existing, large and complex set of known data points.
- This is for understanding and then appropriately classifying the data.

- Supervised

- Unsupervised

- magledig - Audig Lear Say

Unsupervised modeling (using unlabeled data) techniques include clustering algorithms and association rules:

1. K-means clustering:

 Aggregates a specified number of data points into a specific number of groupings based on certain similarities.

2. Reinforcement learning:

- An area of deep learning that concerns models iterating over many attempts.
- It rewards the moves that produce favorable outcomes and penalizing steps that produce undesired outcomes.
- Thus training the algorithm to learn the optimal process.

- Unsupervised

Source: www.javapoint.com

MedTec IIT KANPU

- parametric vs nonparametric

There are three main types of statistical models:

- 1. Parametric: Probability distribution
- (1) A family of probability distributions that has a finite number of parameters.
- 2. Nonparametric:
- Models in which the number and nature of the parameters are flexible and not fixed in advance.

 63 60 70
- 3. Semiparametric:
- The parameter has both a finite-dimensional component (parametric) and an infinite-dimensional component (nonparametric).

Statistical Modeling - vs Mathematical Modeling

Similarity:

• Mathematical modeling also translates real-world problems into tractable mathematical formulations whose analysis provides insight, results and direction useful for the originating application.

Dissimilarity:

• Unlike statistical modeling, mathematical modeling involves static models that represent a real-world phenomenon in mathematical form.

- Once a mathematical model is formulated, it does not necessitate change.
- Statistical models are flexible and, with the aid of machine learning, can incorporate
 new, emerging patterns and trends, and will adjust with the introduction of new data.

Statistical Modeling - vs Machine Learning

- Machine learning is a subfield of computer science and artificial intelligence that involves building systems that can learn from data rather than explicitly programmed instructions.
- Machine learning models seek out patterns hidden in data independent of all assumptions, therefore predictive power is typically very strong.
- Machine learning requires little human input and does well with large numbers of attributes and observations.

Thank you

