Week-04-L-06

Select a Statistical Model

Exercises on Classification & Regression

Dr. Amandeep Singh Imagineering Laboratory Indian Institute of Technology Kanpur

Problem Statement

The following are the details of yield effected by three different pesticides in different fields with same four different crops.

Brand of pesticide	Y Y			
	Wheat.	Rice -	Red Lentil	Sugarcane
X -	8	9	5	10
У -	7	6	6	9
Ζ. 🖌	6	6	7	5

Find out whether there is any significant difference in the performance of the three pesticides.

• We first find the sum of all the three varieties:

$$\sum x = 8 + 9 + 5 + 10 = 32$$
$$\sum y = 7 + 6 + 6 + 9 = 28$$
$$\sum z = 6 + 6 + 7 + 5 = 24$$

$$\sum x = 8 + 9 + 5 + 10 = 32$$
$$\sum y = 7 + 6 + 6 + 9 = 28$$

- Sample mean for $\bar{x} = \frac{32}{4} = 8$ Sample mean for $\bar{y} = \frac{28}{4} = 7$
- Sample mean for $\overline{z} = \frac{24}{4} = 6$
- Total number sample items = No. of items for x + No. of items for y + No. of items for z = 4 + 4 + 4 = 12 (N)
- Mean of all the samples $\overline{M} = \frac{32+28+24}{12} = \frac{84}{12} = 7$

• Sum of Squares of deviation of X:

X	$X - \overline{X} = X - 8$
8	0 - 15
9	1
5	-3
10	2 -

• Sum of Squares of deviation of Y:

Y	$Y - \overline{Y} = Y - 7$
7	0 -
6	-1 ~
6	-1 ~
9	2

• Sum of Squares of deviation of Z:

	Z - Z = Z - 6
6	0
6	0
7	-1
5	-1

• Sum of squares of deviations within = $\sum (X - \overline{X})^2 + \sum (Y - \overline{Y})^2 + \sum (Z - \overline{Z})^2$

$$= 14 + 6 + 2$$

 $= 22$

Sum of squares of deviations for total variance:

Pesticide	Crop	Yield	Yield– <u>Me</u> an	$(Yield-Mean)^2$
r= A	Wheat	8	1	1
A	Rice	9	2	4
A	Pulse A	5	-2	4
A	Sugarcane	10	3	9
B B	Wheat	7	0	0
В	Rice	6	-1	1
В	Pulse A	6	-1	1
В	Sugarcane	9	2	4
2= C	Wheat	6	-1	1
С	Rice	6	-1	1
С	Pulse A	7	0	0
С	Sugarcane	5	2	4
				30

ANOVA TABLE

Source of Variation	Degrees of Freedom	Sum of Squar
Between Varieties	3-1=2	
Within Varieties	12-3=9	
Total	12-1	
	u	

Calculation of F value:

 $F = \frac{Greater\,Variance}{Smaller\,Variance} = \frac{4.0}{2.44} = 1.6393$

Degrees of freedom for greater variance $(df_1) = 2$ Degrees of freedom for smaller variance $(df_1) = 9$

Let us take level of significance as 5%

The table value of F = 4.26

	D.C.A									
	DF1	$\alpha = 0.10$								
DF2	1	2	3	4	5	6	7	8	9	10
1	39.863	49.5	53.593	55.833	57.24	58.204	58.906	59.439	59.858	60.195
2	8.5263	9	9.1618	9.2434	9.2926	9.3255	9.3491	9.3668	9.3805	9.3916
3	5.5383	5.4624	5.3908	5.3426	5.3092	5.2847	5.2662	5.2517	5.24	5.2304
4	4.5448	4.3246	4.1909	4.1073	4.0506	4.0098	3.979	3.9549	3.9357	3.9199
5	4.0604	3.7797	3.6195	3.5202	3.453	3.4045	3.3679	3.3393	3.3163	3.2974
6	3.776	3.4633	3.2888	3.1808	3.1075	3.0546	3.0145	2.983	2.9577	2.9369
7	3.5894	3.2574	3.0741	2.9605	2.8833	2.8274	2.7849	2.7516	2.7247	2.7025
8	3.4579	3.1131	2.9238	2.8064	2.7265	2.6683	2.6241	2.5894	2.5612	2.538
9	3.3603	3.0065	2.8129	2.6927	2.6106	2.5509	2.5053	2.4694	2.4403	2.4163
10	3.285	2.9245	2.7277	2.6053	2.5216	2.4606	2.414	2.3772	2.3473	2.3226
11	3.2252	2.8595	2.6602	2.5362	2.4512	2.3891	2.3416	2.304	2.2735	2.2482
12	3.1766	2.8068	2.6055	2.4801	2.394	2.331	2.2828	2.2446	2.2135	2.1878
13	3.1362	2.7632	2.5603	2.4337	2.3467	2.283	2.2341	2.1954	2.1638	2.1376
14	3.1022	2.7265	2.5222	2.3947	2.3069	2.2426	2.1931	2.1539	2.122	2.0954

	DF1	α = 0.05								
DF2	1	2	3	4	5	6	7	8	9	10
1	161.45	199.5	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88
2	18.513	19	19.164	19.247	19.296	19.33	19.353	19.371	19.385	19.396
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022

Inference:

On doing the calculation we observe that the table value of F is larger than the calculated value of F. $\lfloor -64 \rfloor$

Now, we can say that null hypothesis is accepted.

It's concluded that there is no significant difference in the performance of the different varieties of pesticides used here, at 5% level of significance.

4.26alue of F is larger than the

Exercise on Regression

<u>Problem Statement</u>

The data has been provided in the following table:

Responses: Height (cm) Weight (kg)

Exercise on Regression

S, 10, 17 = 32, 10, 18 = 32+3

	Std	Run	Block	Factor 1	Factor 2	Response 1	Response 2
	4	Ļ		Fertilizer (g)	Spacing (cm)	Height (cm)	Weight (kg)
\prod		8	Block 1	5.	2	69.	1.16
	2	10	Block 1	10	2	73	1.18
	3	2	Block 1	15	2	65	1.09
	4	11	Block 1	5	10/	71	1.21
+	5	6	Block 1	10 🦾	10	76 🛩	1.29 -
	6	5	Block 1	15 🧹	10 –	67 -	1.12 -
	7	1⁄	Block 1	5	18 /	74	1.27
	8	9	Block 1	10	18	79	1.31
	9	7	Block 1	15	18	68	1.13
7	10	3⁄	Block 1	10	10	75 -	1.29
-	11	4	Block 1	10	10	76 -	1.28
<u> </u>					1		

D.V

Exercise on Regression

ANOVA Table

for weight

	Sum of		Mean	
Source	Squares	df	Square	🖌 F Va
Model	0.061 -	5	0.012	28.
A-Fertilizer	0.015	1	0.015	35.
B -Spacing	0.013	1	0.013	30.
AB	0.001	1	0.001 .	02.
A ² ⁄	0.025	1	0.025 .	61.0
B ² /	0.001	1	0.001	2.6
Residual	0.002	5	0.001	

35

Quarditic

Thank you

- and the second

