

Integrated approaches in control of GI nematodes in small ruminants

Dr. SENTHILVEL K M.V.Sc., Ph.D.,

Professor and Head
Department of Veterinary Parasitology,
Veterinary College and Research Institute,
Tamil Nadu Veterinary and Animal Sciences University,
Udumalpet, Tamil Nadu, India - 642 205.
Email Id: senthilvelpara@gmail.com

Integrated approaches in control of GI nematodes in small ruminants

- > 1 .Key points in parasites control
- > 2 .Holistic worm management methods

Need of Integrated Parasite Management (IPM)

- All grazing ruminants have GI parasites
- > Causing productive and reproductive losses in small ruminants production
- Widespread worm resistance to dewormer drugs and classes
- ▶ Hence, effective parasite control by integrated parasite management (IPM)

Key points in parasite control

- Our goal is not the creation of parasite free animals but prevention of clinical disease and production losses
- ▶ GIN infection has to be managed NOT possible to eradicate

Integrated Parasite Management (IPM) Holistic worm management

MANAGEMENT (Non chemical methods)

- Husbandry practices
- Host immunity
- Host nutrition
- Pasture and grazing management
- Genetic selection
- worm trapping fungi
- Vaccines

DEWORMERS (Chemical methods)

Blanket Treatment (avoid)

Use Targeted selective treatment (TST)

Allow Refugia Minimize resistance

Clean Husbandry Practices

Follow hygienic practices

- Proper cleaning of shed
- **▶** Clean floor surfaces
- Maintain feeder height to avoid faecal contamination
- Do not feed on floors
- Clean water free from faecal matter
- Provide proper ventilation

- Avoid over crowding –proper stocking size
- Good bio security of farm premises
- Control of other diseases
- Quarantine of newly purchased stock
 - Deworm with broad spectrum drugs
- Culling of animals require more deworming

Host immunity

- Differs according to the worm species and levels of exposure to the parasite
- > Sheep sooner and more complete than goats
- > Need continuous exposure to parasites to develop and maintain immunity
- Age, nutrition and reproductive status have impact on immunity to GIN

> H. contortus induces poor acquired immune response even after

re infection

Host defense mechanisms

Types of immunity

- 1. Innate inherited (rare)
- ii. Acquired
 Acquired during life results
 from exposure to infection

Self – cure phenomenon

- > Self defense mechanism
- Adult worms are expelled spontaneously when there is continuous re infection over a short period
- IgE mediated hypersensitivity reaction
- noticed in Barder's bole worm infection

Nutritional control of parasites

- Healthy animals are more resistant to parasites
- Supplementation of protein and energy helps to builds up immunity
- Improved protein nutrition to more vulnerable animals (weaners, lactating animals)
- > Vitamins and minerals in feed also important
- Weak animals are more susceptible to parasites
- Allowed to graze in a pasture with good vegetation

PROVIDE GOOD NUTRITION

Practices of pasture and grazing management

- ▶ Establishment of clean / low risk pastures
- Pasture rest periods
- Pasture rotation
- Forage height
- Grazing time
- Tree fodder browsing for goats (silvi pasture)
- Multi species grazing
- ▶ Hay making and cropping of grass
- Balanced supplementation

Types of pasture

Clean pasture:

- Pasture free from Parasites can be prepared by
- Cultivation of new pasture
- Pasture not grazed by small ruminants for past 6-12 months
- Pasture grazed by cattle in the previous year
- Burnt pasture

Safe pasture:

Low risk pasture –not heavily infected to effect the production of animals

can be established by

- Pasture grazed by young animals in summer
- Grazing by other species in a longer period/season

Less chances of cross infection between species

Pasture rotation and rest

- ▶ Grazing management technique
- Sub divisions of pasture in to small padddocks
- > Each paddock is grazed for a short time and rested for a much longer time
- Framing of resting time to cause larval death (8-10 weeks)
- > Better applicability in tropical climate
- ▶ Continuous reduction in Pasture Larval burden

Mixed / Alternate grazing system

- ➤ Two or more host species in an environment do not share common parasite species
- ► Alteration between species can be a successful tool in worm control
- ➤ Cattle and buffalo act as vacuum cleaner to the pasture if grazed before or after sheep and goat

➤ Best example is low intensity of GI nematodes in field flocks because of different animal species on same pasture

Other grazing Management practices

- Periodically renovated with ploughing and tillage – break feacal pellets and exposed to sunlight
- > Tannin rich forages are recommended
- ► Alternate grazing Large animals followed by small ruminants
- ▶ Lower the stocking density decreases PLB

Establishment of silvipasture (Trees +Grass) for goats – best suited model

Maintaining goats in browsing reduces parasitic infection

Grazing time and herbage height

- Larvae move to the top of herbage when the presence of dew/ intensity of light is low
- Limit grazing time in sun light, diminishes the risk
- Most of the larvae live in first 5-10 cm of vegetation from surface
- Do not graze pasture below 10 cm of grass height
- Longer forage height reduces parasite exposure

Destocking and fodder conservation

- Majority of larvae are removed with fodder to be conserved
- Remaining larvae on the top of pasture are exposed to sunlight and drying
- No new eggs have been deposited due to destocking in field
- Provides better opportunity for pasture growth with minimum infectivity

Intensive or confinement system

- Stall fed (Zero grazing)
- Maintain animals in worm free conditions
- High cost investment
- ▶ No worm problems
- No source of infection
- Coccidiosis and flea infestation are major issues

Breeding of animals for worm resistance

- Long term process
- Geographical variation in breeds
- Varying levels of parasitic resistance reported in Indian breeds - Garole, Munjal breed, Coimbatore sheep
- Select resistant animals based on records (EPG/TST tools)
- Cull susceptible animals with high EPG and require more treatment
- Do not select replacement stock with high EPG /more treatment flocks
- Use resistant breeds for breeding

Garole sheep

Coimbatore sheep

Gene marker test

- Gene marker tests will help to identify sheep that have lower FEC - breed dependent.
- Research ongoing to identify genomics of such animals
- ► The CarLAR saliva test (Carbohydrate Larval Antigen) developed in New Zealand measures antibodies to the L3 stage of GIN
- This test helps to select sheep that develop immunity more rapidly or to cull animals that do not.

Parasite trapping fungi

Duddingtonia flagrans

- Belongs to a group of nematophagous fungi that physically entrap nematodes through an adhesive hyphal net
- ➤ The additive contains the fungus in the form of chlamydospores and is intended to control pathogenic nematodes on pasture
- Fungus that traps and kills round worm larvae in manure of animals
- Mix with supplement for daily administration

Courtesy: Dr. G.Ponnudurai

- Main objective is to clean up pasture
- Reduces re infection of pastures, resulting in cleaner pastures
- ▶ Ready to use commercial products are available (Bio Worma)
- Feed when parasites are active
- Feed to most susceptible animals in flock

Periparturient females Lambs / kids & others

Vaccines

- Developed for Haemonchosis
- Barbervax A commercial vaccine in Australia, UK & New Zealand
- Requires three priming dose followed by two or three additional vaccinations for a total of five to six vaccine doses in a year.

- Highly effective
- > Research is ongoing to develop vaccine against scour worms

Integrated strategy

- Integration of different approaches will be sustainable in view of management of anthelmintic resistance in future
- ➤ There is no silver bullet to manage parasitic infection, hence, integrating various practices is the key to success
- Regional worm management programme should be developed for effective control of PGE
- Success of pasture management depends on ability of farmers / organisation to understand an implement them.

Update on Control of Gastro Intestinal Nematodosis in small ruminants

Update on Control of Gastro Intestinal Nematodosis in small ruminants

- 1. Parasitic Gastro Enteritis (PGE)
 - Etiology and Transmission of GI nematodes
- 2. Epidemiology and pathogenesis of GI parasitism
- 3. Economic impact and Diagnosis of GI Nematode infections
- 4. Parasitic Gastro Enteritis Therapy and control by Anthelmintics
- 5. Integrated approaches in control of GI nematodes in small ruminants

