

Parasitic Gastro Enteritis (PGE) -Etiology and Transmission of GI nematodes

Dr. SENTHILVEL K M.V.Sc., Ph.D.,

Professor and Head
Department of Veterinary Parasitology,
Veterinary College and Research Institute,
Tamil Nadu Veterinary and Animal Sciences University,
Udumalpet, Tamil Nadu, India - 642 205.
Email Id: senthilvelpara@gmail.com

Update on Control of Gastro Intestinal Nematodosis in small ruminants

Update on Control of Gastro Intestinal Nematodosis in small ruminants

- 1. Parasitic Gastro Enteritis (PGE)
 - Etiology and Transmission of GI nematodes
- 2. Epidemiology and pathogenesis of GI parasitism
- 3. Economic impact and Diagnosis of GI Nematode infections
- 4. Parasitic Gastro Enteritis Therapy and control by Anthelmintics
- 5. Integrated approaches in control of GI nematodes in small ruminants

Parasitic Gastro Enteritis (PGE) - Etiology and Transmission of GI nematodes

- 1. Gastro intestinal nematodes that causes PGE
- 2. Mode of Transmission

What is Parasitic Gastro Enteritis?

➤ PGE is a disease complex associated with a number of nematode species (mostly strongyles) either in single or in combination.

► Characterised by diarrhoea, weakness, anaemia, hypoalbuminaemia and reduced productive

performance.

Present scenario on GIP...

- ► All grazing ruminants have GIN
- Major constraint in small ruminant production
- ➤ Hot and humid tropical climate is very conducive for development and survival of preparasitic stages
- Governed by weather conditions and adopted managemental practices
- Extensive grazing system community grazing

Major kinds of Internal parasites that causes PGE

I. Helminths (worms)

Nematodes (Round worms)

Cestodes (Tapeworms)

Trematodes (Flukes)

II. Protozoa

Coccidia (Eimeria spp.)

Cryptosporidium spp.

Parasite species differ in location and weather conditions

Common GIN that causes PGE includes

Strongyle nematodes – Bursate worms

Haemonchus contortus (Barber pole worm)

- abomasum

Trichostrongylus colubriformis (Black scour worm) - small intestine

Teladorsagia circumcincta (Brown stomach worm) - abomasum

Nematodirus battus (thread necked worm) - small intestine

Bunostomum trignocephalum (hook worm) - small intestine

Gaigeria pachyscelis (hook worm) - small intestine

Oesophagostomum columbianum (Nodule worm) - large intestine

Strongyloides spp.

Strongyloides papillosus (Thread worm) - small intestine

Other GIN - lesser importance

Haemonchus contortus - Barber's pole worm

- Most pathogenic abomasal worm (15 -30 mm in size)
- **▶ Blood sucking nematode** (0.05 ml/worm/day)
- Bleeding on abomasal surface by bite of sharp teeth-Lancet
- Anaemia
- Most fecund nematode 5000 8000 eggs/day/worm
- Short lived

The most pathogenic parasite of sheep

Haemonchus contortus in sheep abomasum

Haemonchus contortus - Identification

Gross- female worm

head end

Male-tail

female

Worm uterus is visible as a white stripe around the red blood-filled intestine, giving it a barber's pole appearance

Asymmetrical dorsal lobe and y shaped dorsal rays

vulva flap

Trichostrongylus spp.

- ► Black scour worms Lambs & weaners (5 7 mm in size)
- ▶ Abomasal and small intestinal nematode
- **▶** Mixed infection with other nematodes
- Less prolific egg layers
- ▶ Damage to intestinal mucosa Diarrhoea
- > Hypoproteinaemia- Reduced production performance

Oesophagostomum spp. (Nodule worm)

- ➤ Pathogenic worm in tropics
- Size: 15-30 mm
- Large intestinal nematode
- Dark green diarrhoea
- Nodule formation, emaciation

Adult gastrointestinal nematodes of sheep and goats

2.1 Haemonchus confortus -Head end

2.3 Haemonchus contortus -Female Tail end with vulval flap

2.5 Trichostrongylus colubriformis -Male Tail end

2.2 Haemonchus confortus -Male Tail end

2.4 Trichostrongylus colubriformis -Head end

2.6 Oesophagostomum aspersum Head end

Photo courtesy: Dr. Eswaran

Under field conditions...

- Mixed infections is more common
- Difficult to differentiate strongyle ova

- Species confirmation by larval identification
- > Infective stage- L₃

How our farm animals acquired infection?

- Contaminated pasture major SOURCE of infection
- Better understanding of lifecycle is important for worm management
- > GIN infection has to be managed NOT possible to eradicate

Haemonchus and other GIN have direct lifecycle

Lifecycle of a Typical Small Ruminant Gastrointestinal Nematode Parasite

L3 are non-feeding, protected from harsh environment, survive weeks to months on pasture

Image from : Handbook for the Control of Internal Parasites of Sheep and Goats University of Guelph

L3 larvae retain the L2 cuticle and do not feed and relies on stored nutrients

Source: farmhealthonline.com

Hypobiosis (Arrested larval development)

- One way to cope up with adverse environmental conditions
- Temporary cessation in development of its early parasitic development
- ➤ The trigger is thought to be unfavourable environmental conditions for egg hatching and development of the free-living larval stages

- For example, cooling weather of autumn in temperate climates or the dry season in the tropics
- When L₃ is ingested in winter/extreme dry conditions, parasite undergo hypobiosis
- Further development occurs when conducive climate returns or at time of lambing / kidding

Sheep abomasum containing encysted hypobiotic L4 of Trichostronglus sp.

Source:www.vet-parasitology.com/ strongyloida.php

Periparturient egg rise in faecal egg counts

- Increase in numbers of nematode eggs around parturition
- Pronounced in 2-3 weeks before and up to 8 weeks after parturition
- Temporary relaxation of immunity due to circulating lactogenic hormone
 prolactin
- Wake up of hypobiotic parasite - mature - egg shedding / increased rate of egg production from existing adult worms

What kind of animals are more susceptible?

- Young lambs/kids & weaners (<6 months)</p>
- Weak/aged animals
- Pregnant animals (>4 births)
- Stress
- Poor nutrition
- Other diseases

Conclusion

- PGE is caused by mixed infections of GIN
- Strongyle nematodes are the major cause
- Haemonchus contortus predominant sp with other GIN
- ▶ Short, direct lifecycle with L3 as infective stage
- > Hypobiosis & PPR occurs in strongyle nematodes

Update on Control of Gastro Intestinal Nematodosis in small ruminants

