Week-06-L-05

Value Engineering Agricultural Plan

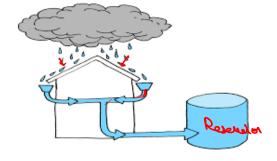
Value Engineering Case Study

Case 2: Irrigation Strategies

Creativity & Evaluation Phases

Prof. J. Ramkumar & Dr. Amandeep Singh

Dept. of Mechanical Engg. & Design Indian Institute of Technology Kanpur



Creativity Phase

Efficient Irrigation in Challenging Environments:

- **✓** Drip Irrigation
- **✓** Subsurface Drip Irrigation
- **✓** Rainwater Harvesting

Source: www.trustbasket.com

Source: https://sustainabilityworkshop.venturewell.org

Creativity Phase

- Check Dams and Terracing:
- **√**Sprinkler Irrigation
- **✓** Flood Irrigation :
- · Solar-Powered Pumps: without we of abdicity

Creativity Phase

- Dig water wells: Invaluant (intial)

 Use water trucks: Fiel consuption
- Construct canals from nearby water source: Heavy must vest
- **✓** Water reuse
- **√**Rainfall
- **✓** Water redistribution
- Crop selection and rotation

Evaluation Phase

Brainstorming is conducted to identify the problem from the experts. The questionnaire depends on idea screening methods:

- 1. **GO NO GO** Scratch ideas that hold no interest.
- 2. **Champion** Someone who supports the idea.
- 3. **GFI (Go For It)** Discuss pros/cons and vote. GFI is team average. Combine ideas; add new ideas. Record the assertion.
- 4. **Trade-Off Study** Quantify performance characteristics. Select top candidates using Pair-wise Comparison, etc. Could use software such as Expert Choice.
- 5. **Customer Acceptance** Determine & quantify customer acceptance criteria

	Code	Idea	GO or NO GO	Champion
->	I-01	Drip Irrigation	Go′	Y
	I-02	Subsurface Drip Irrigation	No-Go	1
>	I-03	Rainwater Harvesting	Go	γ
	I-04	Sprinkler Irrigation	Go	Υ
	I-05	Flood Irrigation	No-Go)
	I-06	Solar powered Pumps	No-Go	No
	I-07	Dig Water Wells	Go	Y
	I-08	Use water trucks	No-Go	No
>	I-09	Construct canals	Go	Y
•	I-10	Pond Irrigation	Go	7
>	I-11	Water reuse	Go	7
	I-12	Rain	No-Go	_
	I-13	Water redistribution	∕No-Go	
>	I-14	Crop Rotation and Selection	Go	7

MedTech IIT KANPUR

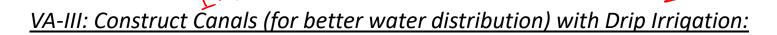
Trade-Off Study

	Code	Performance characteristics			Voting	
		Easy / Application	Land Use	Continuity of supply	Easy Maintenance	
Γ	I-01	✓	✓.	X	✓	
	I-03	√		X	√	
	I-04 %		-	X	X	Reject
	I-07 2	CoxeX		√	X	Reject
	I-09	X	√	√	√	9
	I-10	√	✓	X	✓	
	I-11	Χ		√	√	
_	I-14	√	✓	X	√	

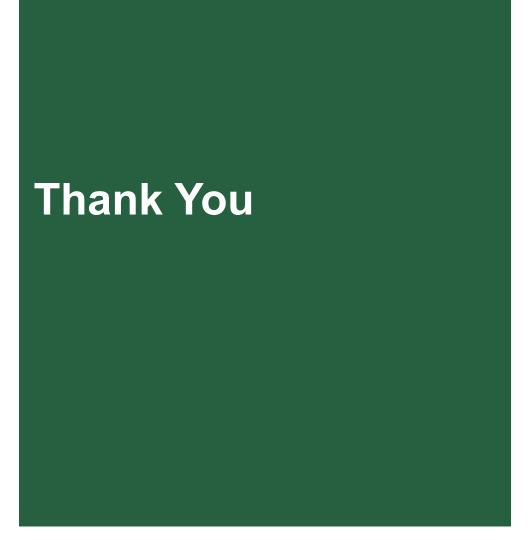
Value Alternatives in Irrigation Strategies:

VA-I: Drip Irrigation with Rainwater Harvesting and Water Reuse:

- Utilize drip irrigation for precise water delivery to plant roots, minimizing wastage.
- Implement rainwater harvesting to collect and store rainwater during the rainy season.
- Reuse treated wastewater to further reduce the demand for freshwater.


Value Alternatives in Irrigation Strategies:

- Establish rainwater harvesting systems for collecting and storing rainwater.
- Create ponds for water storage and irrigation, ensuring a consistent water supply.
- Optimize water usage and soil health through crop rotation and selection.
- Choose crops suited to the local climate and water availability.


Value Alternatives in Irrigation Strategies:

- Build canals for efficient water distribution from a water source to various fields.
- Implement drip irrigation within each field, reducing water loss through evaporation.

10-5

Manage and redistribute water resources effectively through the canal system.

