Week-04-L-05

Value Engineering Agricultural Plan

Creative & Evaluation Phase

Decision Matrix

Prof. J. Ramkumar & Dr. Amandeep Singh

Dept of Mechanical Engineering & Design Indian Institute of Technology Kanpur

Decision Matrix

- Valuable tool for evaluating & selecting optimal choice among multiple options when considering various factors.
- It's especially useful when faced with complex decisions that involve several considerations. This technique is often referred to by different names, including:
 - Pugh matrix
 - Grid analysis
 - Multi-attribute utility theory
 - Problem selection matrix
 - Decision grid
- When selecting the best crop to plant, for instance, you must consider factors such as climate suitability, soil conditions, yield potential, and crop variety preferences

General Considerations

- In agriculture, decision-making Utilize a decision matrix for: involves constraints and considerations.
- Constraints are essential factors that must be met for a decision to • work, while considerations are preferences that, while important, are not deal-breakers.
- For instance, when choosing crops to plant, factors like suitable climate and soil conditions are constraints, whereas preferences for high yield and a specific crop variety are considerations that guide the choice.

- Comparing similar options
- Consolidating choices into one decision
- Weighing important factors

	Competency	Cost	Viability	Desirability	Alignment	Total
Criteria rating	3	4	5	4	2	
Idea A	1	3	3	1	1	
Weighted rating						0
Idea B	5	3	5	3	4	
Weighted rating						0
Idea C	0	2	3	1	1	
Weighted rating						0
Idea D	5	1	2	1	1	
Weighted rating						0

How to create?

- Consider you're a commercial dairy farmer looking to invest in new milking equipment.
- You have three different milking machines on your shortlist and need to determine the most suitable one for your farm.
- Key factors to consider include milking speed, equipment maintenance, initial cost, and the manufacturer's reputation.
- By utilizing a decision matrix, you can systematically assess these factors and make an informed choice that ensures optimal milking efficiency for your dairy operation.

Step – 1 Identify your alternatives

- You're a dairy farmer choosing milking equipment. Start by listing the different equipment options available to you.
- Cheese presses
- Butter churns
- •Ice cream makers
- Homogenizers

Step – 2 Identify important considerations

- Determine crucial factors for your decision, such as
 - Milking speed
 - Equipment maintenance
 - Initial cost
 - Manufacturer reputation
 - Milk Volume Handling
 - Durability and Longevity
 - Energy Efficiency

Step – 3 Create Your Decision Matrix:

	Equipment maintenance	Milk Volume Handling	Energy Efficiency	Initial cost	Score
Eqp . 1					
<i>Eqp</i> . 2					
<i>Eqp</i> . 3					
<i>Eqp</i> . 4					
<i>Eqp</i> . 5					

• Use a scale of 1-5 in case of large variations or else a scale of 1-3

Step – 4 Fill your Decision Matrix

	Equipment maintenance	Milk Volume Handling	Energy Efficiency	Initial cost	Score
Eqp . 1	4	3	5	5	
<i>Eqp</i> . 2	3	4	3	4	
<i>Eqp</i> . 3	5	4	4	4	
<i>Eqp</i> . 4	5	4	4	5	
<i>Eqp</i> . 5	5	4	5	3	

Step – 5 Add weights

	Equipment maintenance (4)	Milk Volume Handling (5)	Energy Efficiency (5)	Initial cost (3)	Score
Eqp . 1	4	3	5	5	
<i>Eqp</i> . 2	3	4	3	4	
<i>Eqp</i> . 3	5	4	4	4	
<i>Eqp</i> . 4	5	4	4	5	
<i>Eqp</i> . 5	5	4	5	3	

• Recognize that some factors are more critical than others. Apply weights (between 1-5) to each consideration, indicating their importance.

Step – 6 Multiply the weighted score

	Equipment maintenance (4)	Milk Volume Handling (5)	Energy Efficiency (5)	Initial cost (3)	Score
Eqp . 1	4X4 = 16	3 X 5 = 15	5 X 5 = 25	5X3 = 15	
<i>Eqp</i> . 2	3X4=12	4X5 = 20	3 X 5 = 15	4X3 = 12	
<i>Eqp</i> . 3	5X4=20	4X5 = 20	4 X 5 = 20	4X3 = 12	
<i>Eqp</i> . 4	5X4=20	4 X 5 = 20	4 X 5 = 20	5X3 = 15	
<i>Eqp</i> . 5	5X4 = 20	4X5 = 20	5 X 5 = 25	3X3 = 9	

Step – 7 Calculate the total score

	Equipment maintenance (4)	Milk Volume Handling (5)	Energy Efficiency (5)	Initial cost (3)	Score
Eqp . 1	4X4 = 16	3 X 5 = 15	5 X 5 = 25	5X3 = 15	71
<i>Eqp</i> . 2	3X4=12	4X5 = 20	3 X 5 = 15	4X3 = 12	59
<i>Eqp</i> . 3	5X4=20	4X5 = 20	4 X 5 = 20	4X3 = 12	72
Eqp. 4	5 X 4 = 20	4X5 = 20	4 X 5 = 20	5 X 3 = 15	75
<i>Eqp</i> . 5	5X4 = 20	4 X 5 = 20	5 X 5 = 25	3X3 = 9	74

Thank You

